پاسخ علف‌هرز بید علفی (Epilobium ciliatum Raf.) مقاوم به پاراکوات، دایکوات و گلایفوسیت به برخی از علف‌کش‌های جایگزین

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشگاه محقق اردبیلی

2 دانشیار گروه زراعت و اصلاح نباتات دانشکده کشاورزی و منابع طبیعی دانشگاه محقق اردبیلی

3 بخش تحقیقات علف های هرز مؤسسه تحقیقات گیاه پزشکی کشور، سازمان تحقیقات، آموزش و ترویج کشاورزی، تهران، ایران

4 استاد دانشگاه کوردوبا، اسپانیا

چکیده

بید علفی (Epilobium ciliatum Raf.) علف‌هرزی رایج در مزارع و باغات می‌باشد. این گونه اغلب توسط علف‌کش‌های دایکوات، پاراکوات (گروه دی) و گلایفوسیت (گروه جی) کنترل می‌شود. اما گزارشها حاکی از وقوع مقاومت در این گونه به هر دو گروه از علف‌کش‌های نام برده می‌باشد. بدین منظور آزمایشی در سال 2017 با کاربرد چهار گروه از علف‌کش‌ها شامل گلوفوسینیت (بازدارنده گلوتامین سینتتاز)، ام‌سی‌پی‌آ و فلورکسی‌پیر (شبه اکسین)، فلازاسولفورن (بازدارنده‌های استولاکتات سینتاز) و پری فلوفن-اتیل وکارفن‌ترازون (بازدارنده‌های پروتوپرفیرینوژن اکسیداز) در دانشگاه کوردوبا (اسپانیا) به منظور کنترل این گونه صورت گرفت. بررسی کارایی علف‌کش‌های مذکور بر توده‌های حساس و مقاوم بید علفی با کاربرد هشت دز از هر علف‌کش در هشت تکرار صورت گرفت. 21 روز پس از تیمار علف‌کش‌ها، دز کاهش دهنده تعداد بوته (LD50) و کاهش وزن تر (GR50) تا 50 درصد اندازه‌گیری شد. نتایج نشان داد که درجات مختلفی از مقاومت (FR) بین دو بیوتیپ حساس و مقاوم بید علفی از نظر وزن‌تر و تعداد بوته‌های زنده مانده پس از کاربرد تمام علف‌کش‌ها وجود داشت. اگرچه نتایج نشان داد که بجز فلورکسی‌پیر که برای کنترل بیوتیپ مقاوم به دز (05/363 گرم در هکتار) بیشتر از دز توصیه شده (300 گرم در هکتار) نیاز داشت، تمام علف‌کش‌ها توانستند در مقدار کمتر از دز توصیه شده هر دو بیوتیپ مقاوم و حساس را به خوبی کنترل نمایند. اما نتایج نشان می‌دهد که گونه‌ی مقاوم به علف‌کش بیشتری نیاز داشت، برای همین امر توصیه می‌شود با احتیاط بیشتر می‌توان از همه‌ی علف‌کش‌های مورد مطالعه به منظور مدیریت مناسب این علف‌هرز استفاده نمود.

کلیدواژه‌ها


عنوان مقاله [English]

Response of paraquat, diquat and glyphosate resistant willowherb (Epilobium ciliatum Raf.) to some different alternative herbicides

نویسندگان [English]

  • bhroz khalil tahmasbi 1
  • Mohammad Taghi Alebrahim 2
  • Eskandar Zand 3
  • Hamidreza Sasanfar 3
  • Rafael De Prado 4
1 mohghegh ardabili
2 Associate Professor, Department of Agronomy and plant Breeding, Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Iran
3 Iranian Research Institute of Plant Protection, Agricultural Research, Education and Extension Organization (AREEO), Tehran, Iran
4 Department of Agricultural Chemistry,University of Córdoba,Spain
چکیده [English]

Willowherb (Epilobium ciliatum), a common weed in fields and gardens, is often controlled by diquat, paraquat and glyphosate herbicides, but reports showed appearance of resistance in this species to both groups of above herbicides. Due to this purpose, an experiment was performed in the University of Cordoba ,2017, as an alternative to control this weed using four groups of herbicides including glufosinate (GS inhibitor), MCPA and Fluroxypyr (synthetic auxin), flazasulfuron (ALS inhibitor) and pyraflufen-ethyl and Carfentrazone (PPO inhibitor). To investigate the effect of the mentioned herbicides, each herbicide used at eight doses and eight replicates. Finally, the lethal dose (LD50) and dry weight loss (GR50) were measured 21 days after treatments. The results showed the different degree of resistance between sensitive and resistant biotypes of willowherb in terms of the fresh weight and number of survivals after treatment with each herbicide. Also the except for fluroxypyr which needed 365.05 gr h-1 higher dose than the recommended dose (300 gr h-1) to control resistant biotype, the rest of the herbicides controlled both the resistant and sensitive biotypes well at lower doses than recommended ones. As a result, the resistant species needed more herbicides, therefore, all studied herbicides could be used with more caution in the proper management of this herb.

کلیدواژه‌ها [English]

  • Dose response
  • GR50
  • herbicide
  • LD50
  • resistance
 Beckie, H. J. 2007. Beneficial management practices to combat herbicide-resistant grass weeds in the Northern Great Plains. Weed Technol. 21: 290-299.
Bracamonte, E., Fernández-Moreno, P.T., Barro, F. and De Prado, R. 2016. Glyphosate-resistant Parthenium hysterophorus in the Caribbean islands: Non target site resistance and target site resistance in relation to resistance levels. Frontiers in plant science. 7:1845. DOI:10.3389/fpls.2016.01845.
Burkhard, S. and Kabelo, S. 2016. 2,4-d transport and herbicide resistance in weed.  ‏J. Exp. Bot. 67(11): 3177-3179.
Delye, C., Causse, R. and Michel. S. 2016. Genetic basis, evolutionary origin and spread of resistance to herbicides inhibiting acetolactate synthase in common groundsel (Senecio vulgaris). PestManag. Sci.72: 89 – 102.
Dinelli, G., Marotti, I., Bonetti, A., Catizone, P., Urbano, J.M. and Barnes, J. 2008. Physiological and molecular basis of glyphosate resistance in Conyza bonariensis (L.) Cronq biotypes from Spain. Weed Rese.48: 257-265. doi: 10.1111/j.1365-3180.2008. 00623.x
Fernandez-Moreno, J.P., Alcántara, R., Osuna, M.D., Vila-Aiub, M.M. and De Prado, R. 2017a. Forward selection for multiple resistance across the non-selective glyphosate, glufosinate and oxyfluorfen herbicides in Lolium weed species. Pest Manag. Sci. 73:936-944 DOI:10.1002/ps.4368.
Fernandez-Moreno, J.P., Levy-Samoha, D., Malitsky, S., Monforte, A.J., Orzaez, D., Aharoni, A. and Granell, A. 2017b. Uncovering tomato quantitative trait loci and candidate genes for fruit cuticular lipid composition using the Solanum pennellii introgression line population. J. Exp. Bot. 68: 2703–2716.
Fuerst, E.P. and Vaughn K.C. 1990. Mechanism of Paraquate Resistance. Weed Technol. 4: 150-156.
Ganie, Z.A. and Jhala, A.J. 2017. Interaction of 2,4-D or dicamba with glufosinate for control of glyphosate-resistant giant ragweed (Ambrosia trifida L.) in glufosinate-resistant maize (Zea mays L.). Front. Plant Sci. 8: 1207. doi: 10.3389/fpls.2017.01207
Ge, X., d'Avignon, D.A., Ackerman, J.J. and Sammons, R.D. 2010. Rapid vacuolar sequestration: the horseweed glyphosate resistance mechanism. PestManag. Sci.66: 345–348. doi:10.1002/ps.1911
Gherekhloo, J., Fernández-Moreno. P.T., Alcántara-de la Cruz. R., Sánchez-González, E., Cruz-Hipolito H.E, Dominguez-Valenzuela J.A. and De Prado R .2017. Pro-106-Ser mutation and EPSPS overexpression acting together simultaneously in glyphosate-resistant goosegrass (Eleusine indica). Sci. Rep. DOI: 10.1038/s41598-017-06772-1.
González -Torralva, F., il-Humanes, J., Barro, F., Dominguez-Valenzuela, J.A. and De Prado, R. 2014. First evidence for a target site mutation in the EPSPS2 gene in glyphosate-resistant Sumatran fleabane from citrus orchards. Agron. Sustain. Dev. 34: 553–560.
González-Torralva, F., Rojano-Delgado, A.M., Luque, M.D., Mülleder, N. and De Prado, R. 2012. Two non-target mechanisms are involved in glyphosate-resistant horseweed (Conyza canadensis L. Cronq.) biotypes. Plant Physiol. 169: 1673-1679. doi: 10.1016/j.jplph.2012.06.014
Hawkes, 2014. Mechanisms of resistance to paraquat in plants. Pest management science. 70:316–1323
Heap, I. 2018. International survey of herbicide resistant weeds. Annu. Rep. inet. http://www.weed science.org: Accessed: 7, 2017.
Himme, M., van Bulcke, R. and Stryckers, J. 1986. Study of individual weeds: variability of Epilobium ciliatum Rafin. (syn. E. adenocaulon Hausskn.). Mededeling van het Centrum voor Onkruidonderzoek van de Rijksuniversiteit. Gent. 126 - 132.
Khalil Tahmasebi, B., Alcántara-de la Cruz., R., Alcántara, E., Torra, J. , Domínguez-Valenzuela .A. , Cruz-Hipólito, H.E., Rojano-Delgado, A.M. and De Prado, R.  2018. Multiple resistance evolution in bipyridylium-resistant Epilobium ciliatum after recurrent selection. Front. Plant Sci. doi: 10.3389/fpls.2018.00695
Khalil Tahmasebi, B., Alebrahim, M.T., Roldán-Gómez, R., Martinsda Silveira, H., Leonardo Biancode Carvalho⁠d, L., Ricardo Alcántara-delaCruze, R. and De Prado, R. 2018. Effectiveness of alternative herbicides on three Conyza species from Europe with and without glyphosate resistance. Crop Prot. 112 (2018) 350–355.
Legleiter, T.R. and Bradley, K.W. 2008. Glyphosate and multiple herbicide resistance in common waterhemp (Amaranthus rudis) populations from Missouri. Weed Sci. 56: 582–587.
Lewinsohn, E, and Gressel, J. 1984. Benzyl viologen-mediated counteraction of diquat and paraquat phytotoxicities.  Plant Physiol. 76:125-130.
Maeda, H. and Dudareva, N. 2012. The shikimate pathway and aromatic amino acid biosynthesis in plants. Annu. Rev. Plant Biol.63:73-105. doi: 10.1146/annurev-arplant-042811-105439
Mallory-Smith, C.A., Thill, D.C. and Dial, M.J. 1990. Identification of sulfonylurea herbicide-resistant prickly lettuce (Lactuca serriola). Weed Technol. 4:163–168.
Moretti, M.L. and Hanson, B.D. 2017. Reduced translocation is involved in resistance to glyphosate and paraquat in Conyza bonariensis and Conyza canadensis from California. Weed Res. DOI: 10.1111/wre.12230
Moss S.R., Perryman S.A.M. and Tatnell L.V. 2007. Managing herbicide resistant black grass (Alopecurus myosuroides): Theory and practice. Weed Techn. 21(2): 300-309.
Myerscough, P.J. and Whitehead, F.H. 1967. Comparative biology of Tussilago farfara L., Chamaenerion angustifolium (L.) Scop., Epilobium montanum L., and Epilobium adenocaulon Hausskn. II. Growth and ecology. New Phytol. 66:785-823.
Nol, N., Tsikou, D., Eid, M., Livieratos, I.C. and Giannopolitis, C.N. 2012. Shikimate leaf disc assay for early detection of glyphosate resistance in Conyza canadensis and relative transcript levels of EPSPS and ABC transporter genes. Weed Res. 52: 233-241. DOI: 10.1111/j.1365-3180.2012. 00911.x
Okuno, J., Iwakami, S., Uchino, A., Tsuchida, K. and Yokoyama, M. 2015. Response to halosulfuron-methyl and Flazasulfuron and mutation of acetolactate synthase gene of Cyperus brevifolius survived in turf grass on golf course. JPN. Soc. Turfgrass Sci. 43: 159-162.
Patzoldt, W.L., Hager, A.G., McCormick, J.S. and Tranel, P. J. 2006. A codon deletion confers resistance to herbicides inhibiting protoporphyrinogen oxidase. Proc. Natl. Acad. Sci. U. S. A. 103:12329–12334.
Primiani, M., Cotterman, M.J.C. and Saari, L.L. 1990. Resistance of kochia (Kochia scoparia) to sulfonylurea and imidazolinone herbicides. Weed Technol. 4:169–172.
Reiofeli, A.S., Nilda, R. B., Patrick, J.T., Shilpa, S., Les, G., Robert, C.S. and Robert, L.N. 2016. Resistance to PPO-inhibiting herbicide in Palmer amaranth from Arkansas. Published online in Wiley Online Library: 4 March 2016.
Ritz C. and Streibig J.C. 2005. Bioassay analysis using R. . Stat. Softw. 12(1): 1-22.
Thihi, D. C. and Lemerle, D. 2001. World wheat and herbicide resistance. Pages 165-169 in Powles, S. and. D.L. Shaner. Eds. herbicide resistance and World Grains. CRC Press, London, UK.
Urbano, J.M., Borrego, A., Torres, V., Leon, J. M., Jimenez, C., Dinelli, D. and Barnes, J. 2007. Glyphosate-resistant hairy fleabane (Conyza bonariensis) in Spain. Weed Technol. 21: 396-401. doi: 10.1614/WT-06-096.1
Vaughn, K.C. 2003. Herbicide resistance work in the United States Department of Agriculture–Agricultural Research Service. Pest Manag. Sci. 59:764–769.
Yu, Q.I., Cairns, A., and Powles, S.B. 2007 Glyphosate, paraquat and ACCase multiple herbicide resistance evolved in a Lolium rigidum biotype. Planta. 225(2): 499-513.
Yu, Q. and Powles, S.B. 2014. Resistance to AHAS inhibitor herbicides: current. Understanding. Pest Manag. Sci. 70: 1340-1350.