برآورد دماهای کاردینال و زمان حرارتی مورد نیاز برای جوانه‏زنی بذر اویارسلام بذری (Cyperus difformis)

نوع مقاله: مقاله پژوهشی

نویسندگان

دانشگاه گرگان

چکیده

هدف از این تحقیق کمی‏سازی پاسخ سرعت جوانه‏زنی علف‏هرز اویارسلام بذری (Cyperus difformis L.) به دما، برآورد دماهای کاردینال و زمان حرارتی مورد نیاز برای درصدهای مختلف جوانه‏زنی بود. چهار مدل رگرسیونی غیرخطی ]دندان مانند، دوتکه‏ای، بتا (4پارامتره و 5 پارامتره)[ در هفت دمای ثابت (از 15 تا 45 با فواصل 5 درجه سانتی‏گراد) برای توصیف پاسخ دمایی سرعت جوانه‏زنی اویارسلام بذری مورد ارزیابی قرار گرفت. شاخص‏های مختلف آماری (ریشه میانگین مربعات خطا (RMSE) و شاخص آکائیک (AICc)) برای مقایسه مدل‏ها به کار رفت. پارامترهای برآورد شده با استفاده از مدل دندان مانند از اطمینان بیشتری نسبت به سایر مدل‏ها برخوردار بود (RMSE=0.0009, AICc=-380.8). دماهای پایه، بهینه زیرین، بهینه زبرین و بیشینه اویارسلام بذری به ترتیب 73/14، 34/34، 54/38 و 01/45 درجه سانتی‏گراد برآورد شد. بر اساس مدل دندان مانند زمان حرارتی مورد نیاز برای 50 و 95 درصد جوانه‏زنی به ترتیب معادل 50/43 و 01/65 درجه- روز بود. دماهای کاردینال به مدل‏های مورد ارزیابی بستگی داشت. به‏طور کلی مدل دندان مانند نسبت به سایر مدل‏ها برآورد بهتری از دماهای کاردینال اویارسلام بذری داشت.

کلیدواژه‌ها


عنوان مقاله [English]

Estimation of Cardinal Temperatures and Thermal Time Requirement for Cyperus difformis Seed Germination

نویسندگان [English]

  • Abolfazl Derakhshan
  • javid gherekhloo
  • efat paravar
چکیده [English]

The aim of this study was to quantify the response of germination rate to temperature and to find cardinal temperatures and thermal time required for different germination percentiles in Cyperus difformis. We compared 4 non-linear regression models [dent-like, segmented and beta (4 and 5 parameter)] to describe the germination rate-temperature relationships of C. difformis over seven constant temperatures (ranging from 15 to 45 ˚C, with 5 ˚C intervals). Different statistical indices [Root Mean of Squares of Error (RMSE), Akaike Information Criterion (AICc)] were used to compare models performances. The dent-like model was found to be the best model to predict germination rate (RMSE=0.0009, AICc=-380.8). The base, the lower optimum, the upper optimum and the maximum temperatures for the germination of C. difformis were estimated to be 14.73, 34.34, 38.54 and 45.01˚C, respectively. The thermal time required to reach 50 and 95% germination was 43.50 and 65.01 degree-days, respectively. The cardinal temperatures depended on the model used for their estimation. Overall, the dent-like model was better suited than the other models to estimate the cardinal temperatures for the germination of C. difformis.

کلیدواژه‌ها [English]

  • Base temperature
  • ceiling response
  • modeling
  • optimum temperature
  • temperature response

Baskin, J. M., Baskin, C.C. 2004. A classification system for seed dormancy. Seed Sci. Res.14: 1–16.

Bewley, J. D. and Black, M. 1994. Seeds: Physiology of Development and Germination. New York: Plenum Press.

Bloomberg, M., Sedcole, J. R., Mason, E.G. and Buchan, G. 2009. Hydrothermal time germination models for radiata pine (Pinus radiata D. Don). Seed Sci. Res. 19: 171-182.

Bradford, K.J. and Still, D.W. 2004. Applications of hydrotime analysis in seed testing. Seed Technol. 26: 74-85.

Burnham, K. P. and Anderson, D. R. 2002. Model selection and inference: A practical information-theoretical approach. New York: Springer-Verlag.

Covell, S., Ellis, R. H., Roberts, E. H. and Summerfield, R. J. 1986. The influence of temperature on seed germination rate in grain legumes. I. A comparison of chickpea, lentil, soybean and cowpea at constant temperatures. J. Exp. Bot. 37: 705–717.

Garcia-huidobro, J., Monteith, J. L. and Squaire, G. R. 1982. Time, temperature and germination of pearl millet (Pennisetum thyphoides S. & H.) I. Constant temperature. J. Exp. Bot. 33: 288–296.

Hakansson, I., Myrbeck, A. and Ararso, E. 2002. A review of research on seedbed preparation for small grains in Sweden. Soil Tillage Res. 64: 23-40.

Harper, J.L. 1977. Population Biology of Plants. Academic Press, New York, NY.

Holm, L.G., Plucknett, D. L., Pancho, J.V. and Herberger, J. P. 1991. The World’s worst weeds: distribution and biology. Malabar, FL, USA: The University Press of Hawaii. 609 pp.

Jame, Y.W. and Cutforth, H.W. 2004. Simulating the effects of temperature and seeding depth on germination and emergence of spring wheat. Agric. Forest Meteorol. 124: 207–218.

Kamkar, B., Ahmadi, M., Soltani, A., Zeinali, E., 2008. Evaluating non-linear regression models to describe response of wheat emergence rate to temperature. Seed Sci. Biotechnol. 2: 53–57.

Kamkar, B., Ahmadi, M., Mahdavi-Damghani, A. and Villalobos, F. J. 2012. Quantification of the cardinal temperatures and thermal time requirement of opium poppy (Papaver somniferum L.) seeds to germinate using non-linear regression models. Ind Crop Prod. 35:192-198.

Kamkar, B., Koocheki, A. R., Mahalati, M. N. and Moghaddam, M. P. R. 2005. Cardinal temperature for germination in three millet species (Panicum miliaceum, Pennisetum glaucum and Setaria italica). Asian J. of Plant Sci. 5: 316–319.

Masin, R., Zuin, M.C., Archer, D.W., Forcella, F. and Zanin, G. 2005. Weed turf: a predictive model to aid control of annual summer weeds in turf. Weed Sci. 53:193–201.

Mwale, S.S., Azam-Ali, S.N., Clark, J.A., Bradley, R.G. and Chatha, M. R. 1994. Effect of temperature on germination of sunflower. Seed Sci. Technol. 22: 565–571.

Phartyal, S.S., Thapliyal, R.C., Nayal, J. S., Rawat, M.M.S. and Joshi, G. 2003. The influences of temperature on seed germination rate in Himalayan elm (Ulmus Wallichina). Seed Sci. Technol. 31: 83–93.

Piper, E.L., Boote, K.J., Jones, J.W. and Grimm, S.S. 1996. Comparison of two phenology models for predicting flowering and maturity date of soybean. Crop Sci. 36: 1606–1614.

Roberts, E. H. 1988. Temperature and seed germination. Pages 109–132 in S. P. Long and F. I. Woodward, eds. Plants and Temperature. Cambridge, UK: Society for Experimental Biology.

Shafii, B. and Price, W. J. 2001. Estimation of cardinal temperatures in germination data analysis. J. Agric. Biol. Environ. Stat. 6: 356–366.

Soltani, A., Galeshi, S., Zeinali, E. and Latifi, N. 2002. Germination, seed reserve utilization and seedling growth of chickpea as affected by salinity and seed size. Seed Sci. Technol. 30: 51-60.

Soltani, A., Robertson, M. J., Torabi, B., Yousefi-Daz, M. and Sarparast, R. 2006. Modeling seedling emergence in chickpea as influenced by temperature and sowing depth. Agric. Forest Meteorol. 138: 156–167.

Steinmaus, S.J., Prather, TS. and Holt, J.S. 2000. Estimation of base temperature for nine weed species. J. Exp. Bot. 51: 275-286.

Thornley, J.H.M. 1987. Modelling flower initiation. In: Atherton, J.G. (Ed.), Manipulation of Flowering. Butherworths, London, p. 6.

Trudgill, D.L., Honek, A., li, D. and Van Straalen, N. M. 2005. Thermal time – concepts and utility. Ann. Appl. Biol. 146: 1–14.

Yan, W. and HUNT, L. A. 1999. An Equation for Modelling the temperature response of plants using only the cardinal temperatures. Ann. Bot. 84: 607-614.

Yin, X., Kropff, M.J., McLaren, G. and Visperas, R.M. 1995. A nonlinear model for crop development as a function of temperature. Agric. For. Meteorol. 77: 1–16.