Effect of different levels of N fertilizer on yield and yield components of maize (Zea mays L.) under different densities of annual ground cherry (Physalis divaricata L.) competition

Document Type : Research Paper

Authors

1 Ph.D student of Weed Science, Department of Agronomy and Plant Breeding, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran.

2 Department of Agronomy and Plant Breeding, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran.

3 Department of Agronomy and Plant Breeding, College of Agriculture and Natural Resources, University of Razi, Kermanshah, Iran.

Abstract

To study the competition effects of annual ground cherry (Physalis divaricata) on maize yield under different rates of N fertilizer, a field experiment was conducted in 2017 in Kermanshah Agricultural and Natural Resources Research and Education Center, Kermanshah, Iran. The experimental design was a randomized complete block with factorial arrangement with three replications. Treatments included nitrogen fertilizer (50%, 100% and 150% recommended rates) and annual ground cherry density (0, 8 and 16 plants/m2). Results showed that the highest and lowest grain yield were 9929 and 6143 kg h-1 respectively that were belonged to weed free with 150% recommended N and 16 plant annual ground cherry/m2 with 50% recommended N, respectively. High densities of annual ground cherry reduced grain yield, grains per row, row number per ear and 1000 kernel weight. Different N rates caused significant variations in grain yield and some of the yield components of maize and annual ground cherry properties like dry weight and height. Overall, results indicated that in fields, where annual ground cherry is the dominant, increasing N application rate to 150% recommended rate, increased maze yield by 17.02
 

Keywords

Main Subjects


Barker, D.C., Knezevic, S.Z. Martin, A.R. Walters, D.T. and Lindquist, J.L. 2006. Effect of nitrogen addition on the comparative productivity of corn and velvetleaf (Abutilon theophrasti). Weed Sci. 54: 354-363.
Cathcart, R.J. and Swanton, C.J. 2004. Nitrogen and green foxtail (Setaria viridis) competition effects on corn growth and development. Weed Sci. 52: 1039-1049.
Costa, C., Stevart, L.M. and Smith, D.L. 2002. Nitrogen effects on grain yield and yield components of early and nonleafy maize genotypes. Crop Sci. 42: 1556-1563.
DiTomaso, J.M. 1995. Approaches for improving crop competitiveness through the manipulation of fertilization strategies. Weed Sci. 43: 491-497.
Fisk, J.W., Hesterman, O.B. Shrestha, A. Kells, J.J. Harwood, R.R. Squire, J.M. and Sheaffer, C.C. 2001. Weed suppression by annual legume cover crops in no tillage corn. Agronomy Journal. 93: 319-325.
Food and Agricultural Organization (FAO). 2012. FAOSTAT, from: http://faostat.fao.org/site/567.
Gill, G. and Davidson, R. 2000. Weed Interference. In: B. M. Sindel (Ed), Australian Weed Management Systems. (pp. 61–80.) RG and FJ Richardson.
Haas, H. and Streibig, J.C. 1982. Changing patterns of weed distribution as a result of herbicide use and other agronomic factors. In: H.M. LeBaron and J. Gressel (Ed.), Herbicide Resistance in Plants. (pp. 57-79.) John Wiley and Sons.
Harbur, M.M. and Owen, M.D. 2006. Influence of relative time of emergence on nitrogen responses of corn and velvetleaf. Weed Sci.54: 917-922.
Havlin, JL. Beaton, J.D. Tisdale, S.L. and Nelson, W.L. 1997. Soil Fertility and Fertilizers. 6th ed. Printed in the United States of America.
http://agrisis.areo.ir/HomePage.aspx?TabID=15589&Site=agrisis.areo&Lang=en-US
http://www.Agr.ca/misb/spcrops/bean_e.html. Accessed: January 29, 2001
Lemerle, D. Gill, G.S. Murphey, C.E. Walker, S.R. Cousens, R.D. Mokhtari, S. Peltzer, S.J. Coleman, R. and Luckett, D.J. 2001. Genetic improvement and agronomy for enhanced wheat competitiveness with weeds. Australian Journal of Agricultural Research. 52: 527-548.
Naderi, R. and Ghadiri, H. 2010. Competition of wild mustard (Sinapis arvense L.) densities with rapeseed (Brassica napus L.) under different levels of nitrogen fertilizer. Journal of Agricultural Science and Technology. 13: 45-51.
Nazari, A. J. Alizade, H. M. Rahimian, M. H. Mousavi, S. K. Sohilnejad, A. 2010. Seed dormancy and emergence pattern of ground cherry  (Physalis divaricata) in sugar beet and wheat farms of Alashthar. J. of sugar beet. 26: 127-138. (In Persian with English summary).
Nosratti I, Heidari H, Muhammadi G, Saeidi M. 2016. Germination and emergence characteristics of annual ground cherry (Physalis divaricata). Jordan J Biol Sci. 2016;9:131–8.
Nosratti, I. Sabeti, P. Chaghamirzaee, G. Heidari, H. 2017. Weed problems, challenges, and opportunities in Iran.CropProtec. 111,10.1016/j.cropro.2017.10.007.
Oerke, E.C. and Dehne, H.W. 2004. Safeguarding production losses in major crops and the role of crop protection. Crop Protect. 23: 275-285.
Reed, A.J. Singletary, G.W. Schuster, J.R. Williamson, D.R. and Christy, A.L. 1988. Shadding effects on dry matter and nitrogen partitioning, kernel number and yield of maize. Crop Sci. 28: 819-825.
Rohrig, M. and Stutzel, H. 2001. A model for light competition between vegetable crops and weeds. European Journal of Agronomy. 14: 13-29.
Sabeti, P. 2012. Advance study for estimation of yield loss due to weeds in corn fields. http://agris.fao.org.
Sarabi, V. Nassiri Mahallati, M. Nezami, A. and Rashed Mohassel, M.H. 2010. Effects of common lambsquarters (Chenopodium album L.) emergence time and density on growth and competition of maize (Zea mays L.). Iranian Journal of Field Crops Research: 5: 862-870. (in Farsi).
Sepehri, A. Modarres Sanavi, S.A. Gharehyazi, B. and Yamini, Y. 2002. Effect of water deficit and different nitrogen rates on growth and development stages, yield and yield component of maize (Zea mays L.). Iranian Journal of Crop Sciences. 4: 184-200.
Sibuga, K. P. and Bandeen, J. D. 1980. Effects of various densities of green foxtail (Setaria viridis (L.) Beauv.) and lamb's-quarters (Chenopodium album L.) on nitrogen uptake and yields of corn. East African Agricultural and Forestry Journal. 43: 214-221.
Sinclair, T.R. and Horie, T. 1989. Leaf nitrogen, photosynthesis, and Crop Use Efficiency: A Review. Crop Sci. 29: 90-98.
Taghizadeh, R. and Sharifi, R.S. 2011. Effect of nitrogen fertilizer on yield attributes and nitrogen use efficiency in corn cultivars. JWSS-Isfahan University of Technology. 15(57): 209-217. (in Farsi)
Teasdale, J.R. and Cavigelli, M.A. 2010. Subplots facilitate assessment of corn yield losses from weed competition in a long-term systems experiment. Agronomy for sustainable development. 30: 445-453.
Teyker, R.H. Hoelzer, H.D. and Liebl, R.A. 1991. Maize and pigweed response to N supply and form. Plant Soil. 135: 287-292.
Tollenaar, M. Nissanka, S. Aguilera, P. Weise, A. and Swanton, C.J. 1994. Effect of weed interference and soil nitrogen on four maize hybrids. Agronomy Journal. 86: 596-601.
Vail, G.D. and Oliver, L.R. 1993. Barnyardgrass (Echinochloa crus-galli) interference in soybeans (Glycine max). Weed Technol. 7(1):.220-225.
Zand, E. Baghestani, M.A. Pourazar, R. Sabeti, P. Gezeli, F. Khayyami, M.M. Razzazi, A. 2009. Efficacy evaluation of ultima (nicosulfuron + rimsulfuron), lumax (mesotrione + S-metolachlor + terbuthylazine) and amicarbazone in comparison with current herbicides to control of weeds in corn. J. Plant Prot. 23, 42-55. (In Persian)