Indirect quantitative seed bioassay as a useful method for evaluating herbicide tolerance in wheat cultivars

Document Type : Research Paper

Authors

1 Department of Agronomy and Plant Breeding, University of Tehran, Karaj; Iran

2 Department Agronomy and Plant Breeding,, Tehran of Tniversity, Iran

3 Agronomy and Plant Breeding Department,, University of Tehran, Iran

Abstract

This study was conducted to utilise indirect quantitative seed bioassay and estimation of 50% effective concentration (EC50) variable of herbicide active ingeredient (a.i.) as a useful method for evaluating herbicide tolerance of wheat cultivars in breeding programs. Using primary bioassay in petri dish on seedlings of seven wheat cultivars treated with several concentrations of metribuzin, bromoxynil+MCPA, and 2,4-D+MCPA herbicides, maximum tolerable concentration, the most tolerant cultivar and the best trait was selected for bioassay by measuring morphological traits. Then, the seed bioassay carried out by measuring different morphological traits upon seedlings of the tolerantest selected cultivar in primary test under eight concentrations of herbicides and control (without herbicide) in petri dish. active ingeredient EC50 calculated based on nonlinear regression that were 0.517 and 0.98 litter and 0.285 kg of a.i. ha-1 of metribuzin, bromoxynil+MCPA, and 2,4-D+MCPA respectively. According to the results, length of shoots was a desirable trait for seed bioassay. Quds was the most tolerant cultivar to applied herbicides among the selected cultivar in two steps of test and it can be used to estimation of active ingeredient EC50.

Keywords


Abbasyan, S., Peyghambari S.A., Bihamta, M.R., Alizadeh, H., and Maalee-Ammiri, R., In press. Molecular assessment of tolerance to the Xenobiotic effects of Herbicides in Wheat. Ph.D. thesis, (In persion).
Agatonovic-kustrin, S., Morton, D.W. and Yusof, A.P. 2015. Thin-layer chromatography - bioassay as powerful tool for rapid identification of bioactive components in botanical extracts modern chemistry and applications. Modern Chem. and Appl. 3(1): 1–2.
Aliotta, G., and Cafiero, G. (2001). Handbook of plant ecophysiology techniques:chapter 1 seed bioassay and microscopy in the study of allelopathy : radish and purslane responses. Netherlands, Kluwer Ac. Pub. 2: 1–2.
Beckie, H.J., Friesen, L.F., Nawolsky, K.M., and Morrison, I.N. 1990. A rapid bioassay to detect trifluralin-resistant green foxtail (Setaria viridis). Weed Tech. 4(3): 505–8.
Bolan, B., Grote, S., Miller, D., Simpson, M., Stahr, M., and Stimpson, D. 2018. Herbicide bioassay study guide. S.C.S.T.: 1–12.
Castro, M.C., Bedmar, F., Monterubbianesi, M. G., Peretti, A., and Barassi, C. A. (2002). Determine of chlorimuron and metsulfuron residues in two soil of Argentinia using a rapid seed-bioassay. Env. Bio.23(4): 353-358.
Eizadi-Darbandi, A., Chitband, A.A., Abbasyan, A., and Heidare, M. 2013. Evaluation of tolerance of wheat and barley cultivars to the use of metribuzin herbicide. Iranian J. of Agri. Res. (In persion). 1: 161–152.
Escorial, M.C., Sixto, H. García-Baudínj. M., and Chueca, M.C. 2001. A rapid method to determine cereal plant response to glyphosate a rapid method to determine cereal plant response to glyphosate. J. Weed Tech. 15(4): 697–702.
Eyer, L., Vain, T., Pařízková, B., Oklestkova, J., Barbez, E., Kozubíková, H., and et. al., 2016. 2,4-D and IAA acid conjugates show distinct metabolish in arabidopsis. Plos One. 11(7): 1–18.
Gherekhloo, J., Hasan, M., Mohassel, R., and Mahallati, M. N. (2008). Archive of SID Seed Bioassay and ACCase Enzyme Assay to Study the Resistance of Phalaris minor to Aryloxyphenoxy-propionate (APP) Inhibitors. Env. Sci. 6(1): 43–52.
Goyal, R.K. 2008. Principles and methods of bioassay. Pharmacology: 1–27.
Hemanta, M.R., Mane, V.K., and Bhagwat, A. 2014. Analysis of traditional food additive kolakhar for its physico-chemical parameters and antimicrobial activity. J. of F.P. Tech. 5(11): 10–11.
Nyman, E., Lindgren, I., Lövfors, W., Lundegård, K., Cervin, I., Arbring, T., Altimitas, J., and Cedersund, G., 2015. Mathematical modeling improves EC50 estimations from classical dose–response curves. Federation of Eu. Biochem. Soci. 9(282): 951–962.
Olofdotter, M., Olesen, A., Anderson, S.B., Streibi, J.C., Olofsdotter, M., Olesen, and et al., 1994. A copmpare of herbicide bioassays in cell cultures and whole plants. Weed Res. 34(6): 387–394.
Panuganti, S.J. 2015. Principles involved in bioassay by different methods: a mini-review. Res. and Rev.: Res. J. of Bio., 3(2): 1–18.
Raj Kumar, S., Rao Veerabhadra, K. and Srivastava, G.C. 2002. differential response of wheat genotypes to long term salinity stress in relation to oxidative stress, antioxidant activity and osmolyte concentration. Plant Sci. 163(5): 1037–46.
Saha, G. M. 2002. Design and analysis for bioassays. Indian Statis. Ins. Kolkata, 25(29): 61–76.
Sandall, L. 2018. Root absorption and xylem translocation. Plant and Soil Sci. eLib. Dep. of Agro. and Hort., University of Nebraska – Lincoln. http://passel.unl.edu/pages/informationmodule.php?idinformationmodule=1057703469&topicorder=5&maxto=6.htm. Accessed September 12, 2018.
Sandín-españa, P., Loureiro, I. and Escorial, C. 2011. Herbicides, Theory and Applications. In Tech.: 432-454.
Schulze, E.D., Beck, E., and Müller-Hohenstein, K. 2005. Plant ecology. Int. J. on the Bio. of Stress. (Translated). 692 Pp.
Senseman, S.A., Armbrust, K.L., Johnson, D.H., and et. al., 2007. Herbicide Handbook. Weed Sci. Society of America: 159-161.
Villarroya, M., Escorial, M.C. Garcia-Baudin, J.M. and Chueca, M.C. 2000. Inheritance of Tolerance to Metribuzin in Durum Wheat. Weed Res. 40(3): 293–300.
Villarroya, M., Escorial, M.C. Garcia-Baudin, J.M. and Chueca, M.C. 1997.  Glasshouse and laboratory response of some species of cereals and Bromus diandrus to the new herbicide MON 37500". Brighton Crop Pro.Conf. Weeds 3: 1037-1042.
Waller, R.A., and Duncan, D.B. 1972. A Bayes Rule for the symetric Multiple Comparison Problem. J. of Am. Stat. Assoc. Association, 67: 253–255.
Wang, H., Li, J., Lu, B., Zhu, X., Lou, Y., and Dong, L. (2014). Target-site mechanisms involoved in annual bluegrass (Poa Annua L.) tolerance to Fenoxaprop-P-ethyl. Agri. Sci. and Tech. 15(9): 1457–1465.