Analysis of Genetic Diversity among Populations of Common Reed (Phragmites australis) in Iran

Document Type : Research Paper

Authors

1 Phd Student, University of Tehran

2 University of Tehran

Abstract

The common reed (Phragmites australis) is a perennial weed with the largest geographical distribution of any flowering plant in the world. In this study, 39 populations of common reed were collected and random amplified polymorphic DNA (RAPD) markers were used to characterize the genetic diversity among these populations. The 16 primers used in this study, amplified 149 scorable RAPD bands among which 123 were polymorphic (82%). Genetic similarity coefficients ranged from 0.44 to 0.84, with an average of 0.60. Results showed that RAPD markers are suitable for the evaluation of genetic diversity of common reed. The results support the clonal nature of P.australis with its growth and spread primarily by vegetative propagation

Bastlova, D., Bastl, M., Cizkova, H., & Kvet, J. 2006. Plasticity of Lythrum salicaria and Phragmites australis growth chrarateristic across a European geographical gradient. Hydrobiologia. 570: 237-242.   
  
Bastlova, D., Cizkova, H., Bastl, M., & Kvet, J. 2004. Growth of Lythrum Salicaria and                                  Phragmites australis plant originating from a wide geographical area, response tonutrient and water supply. Global Ecology & Biogeography. 13: 259-271. 
 
Bussell, G. D., Waycott, M. & Chappill, J. A. 2005. Arbitrarily amplified DNA markers as characters for phytogenetic interference. Plant Ecology, Evolution & Systematic. 7: 3-26.
 
Clevering, O. A. 1998. The effect of nitrogen supply on growth and morphology of stubleand die- back populations of Phragmites australis. Aquatic Botany. 60: 11-25.
 
Clevering, O. A. & Lissner, J. 1999. Taxonomy, chromosome numbers, clonal diversity and population dynamics of Phragmites australis . Aquatic Botany. 64: 185-208.
 
Clevering, O. A., Brix, H. & Lukaska, J. 2001. Geographic variation in growth response in Phragmites australis. Aquatic Botany. 69: 89-108.
 
Curn, V., Kubatova, B., Vavrova, P., Krivackova-sucha, O. & Cizkova, H. 2007. Phenotypic and genotypic variation of  Phragmites australis. Comparison of populations in two human-made lakes of different age and history. Aquatic Botany. 86: 321-330.
 
Dawson, I. K., Simons A. J., Waugh, R. & Powell, W. 1995. Diversity and genetic among subpopulation of Gliricidia sepium revealed by PCR based assays. Heredity. 17: 10-18.
 
de Kroon, H. & van Groenendael, J. 1997. The ecology and evolution of clonal plants, Backbuys Publication, Leiden.
 
Diggle, P. K., Lower, S. & Runker, T. A. 1998. Clonal diversity in alpine populations of Polygonum viviparum (polygonaceae). International Journal of Plant Science. 159: 606-615.
 
Djebrouni, M. 1992. Variabilite, morphologique, caryologique et enzymatigue chezqulgues populations de Phragmites austradis (cav) trin ex steud. Folia Geobotanical. Phytotaxonomy. 27: 49-59.
 
Dong, M. 1996. Clonal growth in plants in relation to resource heterogeneity. Acta Botanica Sinica. 30: 828-835.
 
Ellstrand,  N. C. & Roose, M. L. 1987. Patterns of genotypic diversity in clonal plant species. American Journal of Botany. 74: 123-131.
 
Guo, W., Wang, R., Zhou, S., Zhang, S. & Zhang, Z. 2003. Genetic diversity and clonal structure of Phragmites australis in the Yellow River delta of China. Biological Systematic &  Ecology. 31: 1093-1109.
 
Hansen, D. L., Lambertini, C., Jampeetong, A. & Brix, H. 2007. Clone-specific differences in Phragmites australis: effects of ploidy level and geographic origin. Aquatic Botany. 86: 269-279.
 
Hauber, P., White D, A., Powers, S. P. & De Francesch, F. R. 1991. Isozyme variation and correspondence with unusual reflectance patterns in Phragmites australis (poaceae). Plant Systematic & Evolution. 178: 1-8.
 
Jackson, J. B. C., Buss, L.W. & Cook, R. E 1985. Population biology and evolution of clonal organisms. Yale university press, London.
 
Keil, M. & Griffin, A.R. 1994. Use of random amplified polymorphic DNA (RAPD) markers in the discrimination and vertification of genotypes in Eucalyptus. Theorical Applied Genetics. 88: 442-450.
 
Keller, B. E. M. 2000. Genetic variation among and within populations of Phragmites australis in the Charles River watershed. Aquatic Botany. 66: 195-208.
 
Khadari, B., Lashermes, P. & Kjellberg, F. 1995. RAPD fingerprints for identification and genetic characterization of figure (Ficus carica L) genotypes. Journal of Genetic Breeding. 49: 77-86.
 
Khudamrongswart, J., Tayyar, R. & Holt, Y. S. 2004. Genetic diversity of giant reed (Arundo donax) in the Santa Ana River, California. Weed Science. 52: 395-405.
 
Koppitz, H. 1999. Analysis of genetic diversity among selected populations of Phragmites australis world-wide. Aquatic Botany. 64: 209-221.
 
Koppitz, H., Kuhl, H., Hesse, K. & Kohl, J. G. 1997. Some aspects of the importance of genetic diversity in Phragmites australis (Cav.).Trin ex Steudel for the development of reed stands. Botanica Acta. 110: 217-223.
 
Koppitz, H. & Kuhl, H. 2000. To the importance of genetic diversity of Phragmites australis in the development of reed stands. Wetland Ecology & Managament. 8: 403-414.
 
Kuhl, H. & Neuhaus, D. 1993. The genetic variability of Phragmites australis investigated by random amplified polymorphic DNA. Seeuferzerstorung and Seeferrenturierung in Mitteleeuropa-Limnologie aktuell. 5: 9-18.
 
Kuhl, H., Koppitze, H., Rolletschek., H. & Kohl, J. G. 1999. Clone specific differences in a Phragmites australis stands. Morphology, genetic and site describtion. Aquatic Botany. 64: 235-246.
 
Lambertini, C., Gustafsson, M. H. G., Frydenberg, J., Lissneor, J., Speranza, M. & Brix, H. 2006. A polymorphic study of the cosmopoltion genus Phragmites (poacea) based on AFLP. Plant Systemaic Evolution. 258: 161-182.
 
Loveless, M. D. & Hamrick, J. L. 1984. Ecological determinanats of genetic structure in plant  populations. American. Review of Ecological Systems. 15: 65-95.
 
Mckee, J. & Richards, A. J. 1996. Variation in seed production and germinabiltiy in common reed (Phragmites australis) in Britania and France with respect to climate. New Phytologist. 133: 233-243.
 
McLellan, A. J., Prati, D., Kaltz, O. & Schimd, B. 1997. Structure and analysis of phenotypic and genetic variation in clonal plants. In: The ecology and evolution of clonal plants (H. dekroon & J. van Groendael, eds), 185-210. Leiden, the Netherlands, Backuys.
 
McNaughton, S. J. 1975. R- and k-selection in Typha. American Nature. 109: 251-261.
 
Nei, M. & Li, W. H. 1979. Mathematical model for studying genetic variation in terms of restriction endonucleuses. Proceeding of National Academy Scineces. USA. 79: 5269-5273.
 
Neuhaus, D., Kohl, J. G., Dorfel, P. & Borner, T. 1993. Investigation of genetic diversity of reed stands using genetic fingerprint and random amplified polymorphic DNA (RAPD). Aquatic Botany. 45: 357-364.
 
Pellegrin, D. & Hauber, D. P. 1999. Isozyme variation among populations of the clonal species, Phragmites australis (Cav). Trin. Ex steudel. Aquatic Botany. 63: 241-259.
 
Ragot, M. & Hoisington, D. A. 1993, Moleculare markers for plant breeding comparison of RFLP and RAPD genotyping costs. Theorical Applied of Genetics. 86: 975-984.
 
Raybould, A, F., Gray, A. J., Lowrence, M. J. & Marshall, D. F. 1991. The evolution of Spartina C-E. Hubbard (Graminae): origin and genetic variability. Boilogical Journal of Linnean Society. 43: 111-126.
 
Rogers, S. O. & Bendich, A. J. 1985. Extraction of DNA From milligram amounts of fresh, herbarium, herbarium and mummified plant tissues. Plant Molecular Biology. 5: 69-76
 
Rohlf, F. J. 1998. ntsys-pc. Numerical taxonomy and multivariate analysis system, version 2.00. Exeter Software, Setauket, NY.
 
Russell, Y. R., Fuller, J. D., Macuulay, M., Hatz, B. G., Jahoor, A., Powell, W. & Waugh, R. 1997. Direct comparison of levels of genetic variation among barley accessions detected by RFLPS AFLPS SSRS and RAPDS. Theorical Applied Genetics. 95: 714-722.
 
Saltonstall, K. 2002. Cryptic invasion by a non- native genotype of the common reed, Phragmites australis in North America.. Proceeding of National Academy Scineces. USA 99: 2445-2449.
 
Saltonstall, K. 2003a. A rapid method for identifying origin of north American Phragmites population using RFLP analysis. Wetlands 23: 1043-1047.
 
Saltonstall, K. 2003b. Microsatellite variation within and among north American lineages of Phragmites australis. Molecular. Ecology. 12: 1689-1702.
 
Silander, J. A. Jr. 1985. Microevolution in clonal plants. In: population biology and evolution of clonal organisms. (J. B. C. Jackson, L. W. Buss & R. E. Cook, eds), 107-152. Yale University Press, London.
 
Widen, B., Cronberg, N. & Widen, M. 1994. Genotypic diversity, molecular markers and spatial distribution of genetic in clonal plants, a literature survey. Folia Geobotanical. Phytotaxonomy. 29: 254-263.
 
Williams, J. G. K., Kubelik, A. R., Livak, K. J., Rafalski, J. A. & Tingey, S. 1990. DNA polymorphism amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Research. 18: 6531-6535.
 
Zeidler, A., Scheneiders, S., Jung, C., Melshinger, A. E. & Dittrich, P. 1994. The use of DNA fingerprint in ecological studies of Phragmites australis (Cav.).Trin ex Steudel. Botany Acta. 107: 237-242.