تعیین توزیع و پایداری جمعیت اویارسلام ارغوانی با استفاده از علم زمین آمارطی دو فصل رشد

نوع مقاله: مقاله پژوهشی

نویسندگان

دکتری

چکیده

توزیع مکانی و ثبات جمعیت علف هرز اویارسلامارغوانی (Cyperus rotundus) در چهار قطعه زمین تحت تناوب ذرت-آیش طی دو فصل رویش سالهای 1384 و 1385 در مزرعه تحقیقاتی دانشکده کشاورزی دانشگاه فردوسی مشهد مورد بررسی قرار گرفت. در سال 1384، کود نیتروژن (اوره) به دو روش مختلف (کاربرد یکباره و تقسیط شده) به کار رفت. در نتیجة کاربرد یا عدم کاربرد علفکش (مخلوط توفوردی و ام‌سی‌پی‌آ) در قطعاتی که مدیریت نیتروژن در آنها یکسان بود، چهار تیمار در چهار قطعه زمین اعمال شد. در سال دوم قطعات تحت آیش بودند. در هر دو سال، نمونه برداری در نقاط (سیستم شبکه ای 5/2 متر* 5/2متر) و زمانهای (سه نوبت ) مشابهی صورت گرفت. تکنیک های آمار مکانی برای ارزیابی داده ها مورد استفاده قرار گرفت. جمعیت اویارسلامارغوانی در زراعت ذرت با میانگین تراکم 73/51 بوته در متر مربع بیشتر از سال آیش با میانگین تراکم 61/19 بوته درمترمربع بود. طی هر دو سال میانگین تراکم اویارسلامارغوانی در قطعاتی که نیتروژن به صورت یکجا به کار رفته بود،  بیشتر از قطعاتی بود که کود به صورت تقسیط شده به کار رفته بود. مدلهای کروی و نمایی سمی واریوگرام‌ وجود همبستگی مکانی متوسط تا قوی درتمام فصل رشد را نشان دادند. توزیع مکانی در قطعات غیریکنواخت بود و لکه هایی با تراکم بالا و قسمتهایی با تراکم پایین مشاهده شد. الگوی توزیع مکانی اویارسلامارغوانی نشان داد که تجمع مکانی در سطح لکه وجود دارد. علیرغم وجود نوساناتی در حاشیة لکه ها، ثبات مکانی در لکه ها قابل مشاهده بود. نتایج این پژوهش نشان دادند که اویارسلامارغوانی می تواند علف هرز مناسبی جهت کاربرد متناسب با مکان علفکش باشد.

عنوان مقاله [English]

Characterizing Distribution and Stability of Purple Nutsedge Population Using Geostatistics over two Growing Seasons

نویسندگان [English]

  • elmira mohammad vand
  • mohammad rashed mohassel
  • mohammad nasiri mahallati
  • narges pour tousi
چکیده [English]

Distribution and stability of purple nutsedge (Cyperus rotundus) population within four fields under corn-fallow rotation were analyzed over two growing seasons in 2005 and 2006 at the Agricultural Research Station of Ferdowsi University, Mashhad, Iran. In 2005, N-fertilizer (urea) was applied at two different application methods (whole and split application). As a result of applying or not applying herbicide (a mixture of 2,4-D and MCPA) on the fields under the same N-fertilizer management, four treatments  including N(whole)-herb, N(whole)- no herb, N(split)-herb and N(split)- no herb were assigned to four fields. In 2006, the field was kept under fallow. In both years, samplings were conducted at the same points (intersections of 2.5 m-2 grids) and dates (three times). Geostatistical techniques were used to examine the data. Purple nutsedge density was higher in corn fields than the fallow condition, with average densities of 51.73 and 19.61 plants m-2, respectively. In Correspondence to: E. Mohammadvand; E-mail: el_mo19@stu-mail.um.ac.ir both years, the mean density of purple nutsedge was higher in fields with whole application of N-fertilizer compared with split application. Spherical and Exponentialmodels indicated strong or moderate spatial autocorrelation. Spatial distributions were found to be heterogeneous, with high-density patches and areas at lower density. The distribution pattern of purple nutsedge densities indicated that patch-level ‘spatial aggregation’ existed. Despite fluctuation in margins, spatial stability was observed for purple nutsedge patches. This suggests that purple nutsedge would be a good candidate for site-specific application; however more practical experiments are needed to confirm this issue.

کلیدواژه‌ها [English]

  • Purple nutsedge
  • Site-specific management
  • spatial dynamic
  • Spatial distribution
  • Kriging
Anonymous,1994. GS+: Geostatistics for the Environmental Sciences. Version 2.3. Plainwell, MI: Gamma Design Software. 44p.

 

Budhathoki, C.B. 1997. A spatial study of seven weed species in arable crops. MSc. Thesis.            University of Reading, Uk.

 

Burnside, O.C., Wilson, R.G., Weisenberg, S. & Mubbard, K.G. 1996. Seed longevity of 41           weed species buried 17 years in eastern and western Nebraska. Weed Science 44:74-86.

 

Cardina, J., Sparrow, D.H. & McCoy, E.L. 1995. Analysis of spatial distribution of common    lambsquarters (Chenopodium album) in notill soybean (Glycine max). Weed Science     43:258–268.

 

Cardina, J., Sparrow, D.H. & Mccoy, E.L. 1996. Spatial relationships between seedbank and        seedling populations of common lambsquarters (Chenopodium album) and annual grasses.  Weed Science 44:298–308.

 

Cardina, J., Johnson, G.A. & Sparrow, D.H. 1997. The nature and consequence of weed spatial      distribution. Weed Science 45:364-373.

 

Chancellor, R.J. 1985. Changes in the weed flora of an arable field cultivated for 20 years. Journal of Applied Ecology 22:491-501.

 

Clay, S.A., Kreutner, B., Clay, D.E., Reese, C., Kleinjan, J. & Forcella, F. 2006. Spatial distribution, temporal stability, and yield loss estimates for annual grasses and common ragweed (Ambrosia artimisiifolia) in a corn/soybean production field over nine years. Weed Science 54:380–390.

 

Colbach, N., Forcella, F. & Johnson, G.A. 2000. Spatial and temporal stability of weed populations over five years. Weed science 48:366-377.

 

Cousens, R. & Croft, A.M. 2000. Weed populations and pathogens. Weed Research. 40:63-82.

Dielman, J.A. & Mortensen, D.A. 1999. Characterizing the spatial pattern of Abutilon theophrasti seedling patches. Weed Research 39:455-467.

 

Dielman, J.A., Mortensen, D.A., Martin, A.R. & Wyse-pester, D.Y. 1999. Influence of velvetleaf (Abutilon thephrasti) and common sunflower (Helianthus annuus) density variation on weed management outcomes. Weed Science 47:81-89.

 

Donald, W.W. 1994. Geostatistics for mapping weeds, with a Canada thistle (Cirsium arvense) patch as a case study. Weed Science 42: 648-657.

 

Gerhards, R., Wyse-Pester, D.Y., Mortensen, D. & Johnson, G.A. 1997. Characterizing spatial stability of weed populations using interpolated maps. Weed Science. 45:108–119.

 

Gerhards, R. & Oebel, H. 2006. Practical experiences with a system for site-specific weed control in arable crops using real-time image analysis and GPS-controlled patch spraying. Weed Research. 46:185-193.

 

Ghersa, C.M. & Roush, M.L. 1993. Searching for solutions to weed problems. Do we study competition or dispersion? Bio Science. 43:104-109.

 

Goudy, H.J., Bennett, K.A., Brown, R.B. & Tardif, F.J. 2001. Evaluation of site-specific weed management using a direct-injection sprayer. Weed Science. 49: 359-366.

 

Heisel, T., Andreasen, C. & Ersbqll, A.K. 1996. Annual weed distribution can be mapped with kriging. Weed Research. 36: 325-337.

 

Horowitz, M. 1973. Spatial growth of Sorghum halepense (L.) Pers. Weed Research. 13: 200-208.

 

Isaaks, E.H. & Srivastava, R.M. 1989. An Introduction to Aapplied Geostatistics. Oxford University Press. New York.

 

Johnson, G.A., Mortensen, D.A. & Gotway, C.A. 1996. Spatial and temporal analysis of weed seedling populations using geostatistics. Weed Science. 44:704–710.

 

Jurado-Exposito, M., Lopez-Granados, F., Gonzalez-Andujar, J.L. & Garcia-Torres, L. 2004. Spatial and temporal analysis of Convolvulus arvensis L. populations over four growing seasons. Europeah. Journal of Agronomy. 21:287–296.

 

Legendre, P. & Fortin, M.J. 1989. Spatial pattern and ecological analysis. Vegetatio. 80:107–138.

 

Levin, S.A. 1992. The problem of pattern and scale in ecology. Ecology. 73: 1943-1967.

 

Loghavi, M. & Mackvandi, B.B. 2008. Development of a target oriented weed control system. Computers and Electronics in Agriculture. 63:112–118

 

Lueschen, W.E., Andersen, R.N., Hoverstad, T.R. & Kanne, B.K. 1993. Seventeen years of cropping systems and tillage affect velvetleaf (Abutilon theophrasti) seed longevity. Weed Science. 41: 82-86.

 

Lutman, P.J.W., Rew, L.J., Cussans, G.W., Miller, P.C.H., Paice, M.E.R. & Stafford, J.E. 1998. Development of a patch spraying system to control weeds in winter wheat. Home-Grown Cereals Authority Project Report No. 158. HGCA, London.

 

Makarian, H., Rashed-Mohassel, M.H., Bannayan, M. & Nassiri, M. 2007. Soil seed bank and seedling populations of Hordeum murinum and Cardaria draba in saffron fields. Agriculture, Ecosystems and Environment. 120:307–312.

 

Mortensen, D.A., Dieleman, J.A. & Johnson. G,A. 1998. Weed spatial variation and weed management. In: Integrated weed and soil management (eds. J.L. Hatfild, D.D. Buhler, & B.A. Stewart), 293-309. Ann. Arbor Press, Chelsea, MI.

 

Paice, M.E.R. & Day, W. 1997. Using computer simulation to compare patch spraying strategies. In: Proceedings Precision Agriculture 1997 Conference (ed. J.V. Stafford), Warwick, UK, 414-428.

 

Rew, L.J. & Cussans, G.W. 1995. Patch ecology and dynamics-how much do we know? In: Proceedings 1995 Brighton Crop Protection Conference-Weeds, Brighton, UK, pp. 1059-1068.

 

Rew, L.J. & Cousens, R.D. 2001. Spatial distribution of weeds in arable crops: are current sampling and analytical methods appropriate? Weed Research. 41: 1-18.

 

Rew, L.J., Whelan, B. & McBratney, A.B. 2001. Does kriging predict weed distribution accurately enough for site-specific weed control? Weed Research. 41: 245-263.

 

Van Groenendael, J.M. 1988. Patchy distribution of weeds and some implications for modeling population dynamics: a short literature review. Weed Research. 28: 437-441.

 

Webster, T.M. & Cardina, J. 1998. Spatial and temporal emergence patterns of hemp dogbane (Apocynum cannabinum). In: Proceedings Weed Science Society of America, Chicago, IL. 38:9-12.

 

Wiles, L.J., Oliver, G.W., York, A.C., Gold, H.J. & Wilkerson, G.G. 1992. Spatial distribution of broadleaf weeds in North Carolina soybean (Glycine max) fields. Weed Science. 40:554–557.

 

Wyse-Pester D.Y. & Mortensen D.A. 1996. The stability in spatial patterns and density of weed populations. Weed Science Society of America Abstract. 36: 44.

 

Wyse-pester, D.Y., Wiles, L.J. & Westra, P. 2002. Infestation and spatial dependence of weed seedling and mature weed populations in corn. Weed Science. 50: 54-63.

 

Zanin, G., Berti, A. & Riello, L. 1998. Incorporation of weed spatial variability into the weed control decision –making process. Weed Research. 38: 107-118.