پیش‌بینی الگوی سبزشدن جمعیت‌های مختلف یولاف وحشی (Avena ludoviciana)

نوع مقاله: مقاله پژوهشی

نویسندگان

1 پردیس کشاورزی و منابع طبیعی دانشگاه تهران

2 دانشگاه تهران

3 دانشگاه علوم تحقیقات

چکیده

یولاف وحشی علف‌‌هرز بسیار مهم در غلات دانه ریز می‌باشد. زمانی می‌توان به کنترل مناسب یولاف وحشی دست یافت که درک بهتری از الگوهای سبزشدن آن داشت. جهت بررسی الگوی سبز شدن جمعیت‌های مختلف یولاف‌وحشیAvena ludoviciana  شش جمعیت این علف‌هرز از مناطق مختلف کشور، در آزمایش فاکتوریل در قالب طرح بلوک کامل تصادفی با سه تکرار در سال زراعی 92-1391 در مزرعة پژوهشی پردیس کشاورزی و منابع طبیعی دانشگاه تهران واقع در کرج، کشت شدند. جمعیت‌های یولاف‌وحشی از مناطق اهواز، کرج، کامیاران، قزوین، شیراز و اصفهان جمع‌آوری شدند و الگوی سبزشدن آنها در دو شرایط رطوبتی (آبیاری و دیم) مورد بررسی قرار گرفت. نتایج نشاندادند که سبزشدن جمعیت‌های یولاف‌وحشی به طور میانگین از 306 درجه روز رشد در مزرعه شروع شد و برای رسیدن به 50% سبزشدن، در شرایط آبیاری به درجه روز رشد کمتری (461 تا 482 درجه روز رشد) در مقایسه با شرایط دیم (546 تا 665 درجه روز رشد) نیاز داشتند. درجه روز رشد مورد نیاز برای رسیدن به 50 درصد سبزشدن در جمعیت‌های یولاف‌وحشی قزوین و اهواز در دو شرایط رطوبتی تفاوتی نداشت. در بین جمعیت‌های یولاف‌وحشی، جمعیت اهواز در شرایط دیم و آبیاری بیشترین زمان را برای رسیدن به 50 درصد سبز شدن (به ترتیب 784 و 755 درجه روز رشد) نیاز داشت. امکان پیش‌بینی الگوی سبزشدن علف‌های‌هرز، اتخاذ زمان مناسب کنترل را فراهم می‌آورد. نتایج این بررسی نشان داد می‌توان بر اساس درجه روز رشد حاصل از دمای خاک، ظهور یولاف‌وحشی را پیش‌بینی کرد. این پیش‌بینی می‌تواند بر روی عملیات مدیریت این علف‌‌هرز مثل زمان انجام ماخار و یا پاشش علف‌‌کش، مؤثر باشد.

کلیدواژه‌ها


عنوان مقاله [English]

Predicting Seedling Emergence of Different Wild Oat (Avena ludoviciana)

چکیده [English]

Wild oat is an economically important annual weed throughout small grains production areas. Timely and more accurate control of wild oat may be developed if there is a better understanding of its emergence patterns. Sixwild oat populations, collected from different climate regions, were sown in agricultural reaserch field of University of Tehran located at Karaj, Iran during 2012-2013 growing season. The experimental design was a randomized complete blocks with factorial arrangement of treatments in three replications. Wild oat populations were collected from Ahvaz, Karaj, Kamyaran, Ghazvin, Shiraz and Isfahan. Seedling emergence pattern was surveyed under rain fed and irrigated conditions. Rusults indicated that seedlings emergence were started in 306 growing degrees day (GDD) Less GDD was needed for irrigated (461-482) compared with rain fed conditions (546-665 GDD) to reach 50% emergence. There was no difference of GDD to reach 50% emergence, in Ghazvin and Ahvaz populations under the two moisture conditions. Among wild oat populations, Ahvaz needed maximum growing degree days to reach 50% emergence, receiving 784 and 755 GDD under rainfed and irrigated conditions, respectively. Overall, the results showed that wild oat emergence could be predicted based on growing degree days from soil temperature. This approach can help to provide appropriate time of wild oat control. 

کلیدواژه‌ها [English]

  • Growing degree day
  • moisture condition
  • Soil temperature
  • wild oat

Alm, D. M., Stoller, E.W. and Wax, L.M. 1993. An index model for predicting seed germination and emergence rates. Weed Tech. 10: 744-749.

Anderson, R.L. and Nielsen, D.C. 1996. Emergence pattern of five weeds in the Central Great Plains. Weed Tech. 10:744–749.

Andersson, L. and Milberg, P. 1998. Variation in seed dormancy among mother plants, populations and years of seed collection. Seed Sci. Research 8, 29–38

Ardakani, M.R. 2002. Ecology. Tehran University Publication. 340Pp. (In Persian with English summary).

Atri, A., Javanshir, A., Moghadam, M. and Shakiba, MR. 1998. Evaluation of competition in Zea and Phaseolus mixture by reverse yield model. Journal Science of Agri. 4: 105-97. (In Persian with English summary).

Awadhwal, N.K. and Thiersten, G.E. 1985. Soil crust and its impact on crop establishment: A Review. Soil & Tillage Res. 289: 302 -289.

Baghestani, M.A., Zand, E., Barjaste, A.R., Veisi, M., Noroz zade, S.H., Jamali, M. and Kakhaki, S.H .2008. Investigating efficacy of Behpic and Current Herbicides on grassy weed in wheat fields. Final Report. 552/225.pp. 52. Iranian Plant Protection Research Institute.

Baskin, C.C. and Baskin, J.M. 1998. Seeds – Ecology, Biogeography, and Evolution of Dormancy and Germination, San Diego: Academic.

Baskin, C.C. and Baskin, J.M. 2001. Seeds: ecology, biogeography, and evolution of dormancy and germination. Academic Press, San Diego, California, Pp. 666.

Beheshtian, M.A., Rahimian H., and Alizade, H. 2011. Modeling seeding emergence patterns of wild barley (Hordeum spontaneum) and canary grass (Phalaris minor) weeds. Ph.D. thesis. University of Tehran. (In Persian with English summary).

Benech Arnold, R.L., Ghersa, C.M. and Sanchez, R.A. 1990. Temperature effects on dormancy release and germination rate in Sorghum halepense (L.) Pers. Seeds: a quantitative analysis. Weed Res. 30: 81-89.

Benech-Arnold, R., Sanchez, R., Forcella, F., Kruk, B. and Ghersa, C. 2000. Environmental control of dormancy in weed seed banks in soil, Field Crops Res. 67: 105-122.

Benvenuti, S., Macchia, M. and Miele, S. 2001. Light, temperature and burial depth effects on Rumex obtusifolius seed germination and emergence. Weed Res. 41: 177-186.

Bewick, T.A., Binming, L.K. and Yandell, B. 1988. A degree-day model for predicting the emergence of swamp dodder in cranberry. J. Am. Soc. Hortic.Sci. 113:839–841.

Bilbro, J.D. and Wanjura, D.F. 1982. Soil crust and cotton emergence relationship. Transactions of the ASAE. 25, 1485-1488.

Bradford, K.J. 2002. Applications of hydrothermal time to quantifying and modeling seed germination and dormancy. Weed Sci. 50:248–260.

Cairns, A.L.P. and deVilliers, O.T. 1986. Breaking dormancy of Avena fatua L. seed by treatment with ammonia. Weed Res. 26: 191–197.

Chancellor, R.J. and Peters, N.C.B. 1976. Competition between wild oat and crops. Pages 99–112 in D. P. Jones, ed. Wild Oats in World Agriculture. London: A RC.

Clements, D.R. and Ditommaso, A. 2011. Climate change and weed adaptation: can evolution of invasive plants lead to greater range expansion than forecasted? Weed Res. 51: 227–240.

Dorado, j., Sousa, E., Calha, I.M., Gonzalez-Andujar, J.L. and Fernandez-Quintalilla, C. 2009. Predicting weed emergence in maize crops under two contrasting climatic conditions. Weed Res. 30: 251-260.

Downing, T.E., Ringlus, L., Hulme, M. and Waughray, D. 1997. Adapting to climate of cold regions. Dordrecht:Kluwer Academic Publishers. 809- 825.

El-Keblawy, A. & Lovett-Doust, J. 1998. Persistent, non-seed-size maternal effects on life-history traits in the progenygeneration in squash, Cucurbita pepo. New Phytologist 140, 655–665.

Fenner, M. 1992. Environmental influences of seed size and composition. Horticultural Reviews 13, 183-213.

Forcella, F. 1998. Real-time assessment of seed dormancy and seedling growth for weed management. Seed Sci. 8: 201-209.

Forcella, F., Benech-Arnold, R., Sanchez, R. and Ghersa, C. 2000. Modeling seedling emergence. Field Crop Res. 67:123-139.

Grundy, A.C., 2003. Predicting weed emergence: a review of approaches and future Challenges. Weed Res. 43(1): 1-11.

Hanks, R.J. and Thorp, F.C. 1956. Seedling Emergence of Wheat as Related to Soil Moisture Content, Bulk Density, Oxygen Diffusion Rate, and Crust Strength. SSSAJ. 20: 307-310.

Imam, A. G. and R. W. Allard. 1965. Population studies in predominantly self-pollinated species. VI. Genetic variability between and within natural popula-tions of wild oats from differing habitats in California. Genetics 51:49–62.

Khajeh pour, M.R. 2002. Principles of Agronomy. Jahad University Publication. 402 Pp. (In Persian with English summary).

Leblanc, M.L., Cloutier, D.C., Stewart, K. and Hamel, C. 2003. The use of thermal time to model common lambsquarters (Chenopodium album) seedling emergence in corn. Weed Sci. 51:718-724.

Leguizamon, E.S., Fernandez-Quintanilla, C. Barroso, J. and Gonzalez-Andujiar, J. L. 2005. Using thermal and hydrothermal time to model seedling emergence of Avena sterilis ssp. ludoviciana in Spain. Weed Res. 45: 149–156.

Leon, R.G., Knapp, A.D. and Owen, M.D.K. 2004. Effect of temperature on the germination of common waterhemp (Amaranthus tubeculatus), giant foxtail (Setaria faberi), and velvetleaf (Abutilon theophrasti). Weed Sci. 52: 67-73.

Mathur, P.N., N.C. Sinha, and R.P. Singh. 1982. Effect of seed size on germination and seed vigour in oat (Avena sativa L.). Seed Res. 10: 109–113.

Mennan, H. and Ngouajho, M. 2006. Seasonal cycles in germination and seedling emergence of summer and winter population of catchweed bedstraw (Galium aparine) and wild mustard (Brassica kaber). Weed Sci. 54: 114-120.

Mesbah, A., Miller, S.D. Fornstrom, K.J. and Legg, D. E. 1995. Wild mustard (Brassica kaber) and wild oat (Avena fatua) interference in sugarbeet (Beta vulgaris L.). Weed Tech. 9: 49–52.

Meyer, S. E. and S. B. Monsen. 1992. Big sagebrush germination patterns:subspecies and population differences. J. Range Manag. 45:87–93.

Milberg, P., Andersson, L. Elfverson, C. and Regner, S. 1996. Germination characteristics of seeds differing in mass. Seed Science Research 6: 191–197.

Montazeri, M., Zand, E. and Baghestani, M.A. 2005. Weeds and their control in wheat fields of Iran: Plant Pest & Disease Research Institute Press. 85 p. (In Persian with englsih summary).

Morishita, D.W. and Thill, D. C. 1988. Factors of wild oat interference on spring barley (Hordeum vulgare) growth and yield. Weed Sci. 36, 37–42.

Morrow, L.L.A. and Gealy, D.R. 1983. Growth characteristics of wild oat (Avena fatua) in the Pacific Northwest. Weed sci 31, 226-229.

Owen, M.J. and Powles, S. 2009. Distribution and frequency of herbicide-resistant wild oat (Avena spp.) across the Western Australian grain belt. Crop & Pasture Science. 60: 25–31.

Paolini, R., P. Barberi, and C. Rocchi. 2001. The effect of seed mass, seed color, pre-chilling and light on the germination of Sinapis arvensis L. Italian J. Agron. 5:39–46.

Philippi, T. 1993. Bet-hedging germination of desert annuals: variation among populations and maternal effects in Lepidium lasiocarpum. Am. Nat. 142:488–507.

Pour-Ali Moghanloo, H., Alizadeh H., Oveis M. 2013. Predicting Seedling Emergence of Hordeum spontanum: Do the Emerged Ecotypes from Different Climates in Iran Indicate Different Patterns of Emergence? J. Weed Sci. (In Persian with English summary). 9:15-26.

Probert, R.J. 1992. The role of temperature in germination ecophysiology. Fenner, M. (Ed.). Seeds: The ecology of regeneration in plant communities. Wallingford, CAB International. pp. 285–325.

Rosenzweig, C. and Parry, M.L. 1994. Potential impacts of climate change on world food supply. Nature 367: 133- 138.

Satorre, E.H., Ghersa, C.M. and Pataro, A.M. 1985. Prediction of Sorghum halepense (L.) Pers. rhizome sprout emergence in relation to air temperature.Weed Res. 25:103–109.

Sexsmith, J.J., and Pittman, U.J. 1963. Effect of nitrogen fertilizers on germination and stand of wild oats. Weeds 11: 99-101.

Sharma, M.P., McBeath, D.K. and Vanden Born, W. H. 1976. Studies of the biology of wild oat. I. Dormancy, germination and emergence. C J P Sci. 56: 611–618.

Stanton, M.L. 1984. Seed variation in wild radish: effect of seed size on components of seedling and adult fitness. Ecology 65, 1105–1112.

Thurston, J.M. and Phillipson, A. 1976. Distribution. Pages 19–64 in D. P. Jones, ed. Wild Oats in World Agriculture. London: A R C.

Wang, A.B, Tan, D.Y, Baskin, C.C. and Baskin, J.M. 2010. Effect of seed position in spikelet on life history of Eremopyrum distans (Poaceae) from the cold desert of north-west China. Annals of Botany. 106: 95–105.

Wang, J.Y., 1960. A critique of the heat unit approach to plant response studies. Ecology 41: 785-790.

Willenborg, C.J. Wildeman, JC. Miller, A.K. Rossnagel, B.G. and Shirtliffe, S.J. 2005. Oat Germination Characteristics Differ among Genotypes, Seed Sizes, and Osmotic Potentials. Crop Sci. 45: 2023–2029.

Winn, A.A. 1991. Proximate and ultimate sources of within individual variation in seed mass in Prunella vulgaris (Lamiaceae). American Journal of Botany 78: 838-844.

Wolfe, L. M. 1995. The genetics and ecology of seed size variation in a biennial plant, Hydrophyllum appendiculatum (Hydrophyllaceae). Oecologia 101: 343–352.

Wulff, R. 1986. Seed size variation in Desmodium paniculatum I. Factors affecting seed size. J. Eco. 74: 87–97.