مدل سازی سبز شدن علف هرز توق (Xanthium strumarium) در دو عمق مختلف کاشت

نوع مقاله: مقاله پژوهشی

نویسندگان

1 استاد دانشگاه

2 کارشناس ارشد

چکیده

افزایش آگاهی عمومی در زمینه اثرات نامطلوب علفکش‌ها بر محیط زیست وگسترش علف‌های هرز مقاوم به علف‌کش‌ها لزوم کاهش مقدار مصرف علف‌کش‌ها را نشان میدهد. پیش بینی زمان سبز شدن علف‌های هرز با تعیین زمان مناسب کنترل  می‌تواند در این راستا ما را یاری رساند. مدل‌های مختلفی جهت شبیه سازی ظهور گیاهچه های علف‌های هرز  در رابطه با زمان دمایی وجود دارد که با توجه به  توانایی متفاوت مدل‌های مختلف در  پیش بینی صحیح تر این زمان، ما ملزم به انتخاب مدل مناسب تر می باشیم. به همین دلیل و به منظور  بررسی الگوی سبز شدن  علف هرز توق در دو عمق‌ مختلف کاشت در خاک و همچنین انتخاب مدل مناسب برای این گیاه، آزمایشی در سال 1388 انجام شد. در این آزمایش روند ظهورگیاهچه های توق که در عمق های دو و پنج سانتیمتری کشت شده بودند، ارزیابی شد. پیش بینی الگوی ظهور گیاهچه های توق، بین زمان دمایی و درصد سبز شدن تجمعی با استفاده از مدل‌های ویبول، گومپرتز و لجستیک اصلاح شده، صورت گرفت. مقایسه توابع برازش داده شده به داده‌های مشاهده شده در دو عمق‌ مختلف نشان داد که تابع اصلاح شده ویبول برازش بهتری داشته است. از طرف دیگر اختلاف دو عمق  مختلف جهت شروع (10%) ظهورگیاهچه ها از لحاظ زمان دمایی مورد نیاز ، زیاد بود ولی برای اتمام سبز شدن اختلاف زیادی از این لحاظ نداشتند. برای بذوری که در عمق دو سانتی‌متری کشت شده بود 50% سبز شدن تجمعی در زمان دمایی 478 اتفاق افتاد در حالیکه 50% سبز شدن تجمعی این بذور در عمق پنج سانتی‌متری در زمان دمایی 774 صورت گرفت.

کلیدواژه‌ها


عنوان مقاله [English]

Predicting Seedling Emergence of Xanthium strumarium in Two Burial Depths

نویسندگان [English]

  • Ali Yousefi 1
  • Mina Ebrahimi 2
  • malehe ghanbari 2
  • majid por yosef 2
چکیده [English]

Increasing public awareness and concern about the impacts of herbicides on the environment, development of herbicide-resistant weeds, and high economic cost of herbicides have increased the need to reduce the amount of herbicides used in agriculture.  Prediction of weed emergence timing would help reduce herbicide use through the optimization of the timing of weed control. There are several models that could be used for predicting weed seedling emergence. However, the ability to predict  emergence of given species is different between models. For better prediction of emergence we should be able to select a suitable model. Therefore, Xanthium strumarium seedling emergence at two different burial depths from an experiment conducted in 2009-2010, was used to find and develop the best emergence model. The number of X. strumarium seedlings was recorded every three days and then removed from pots. Emergence for each species was expressed as a cumulative percentage of total emergences. Percentage of cumulative emergence values was explained against thermal time (TT) using Logistic, Gompertz and Weibull modified functions. The three models were compared using the Akaike information criterion. The Weibull model gave a better description than other models. Conversely, Logistic model gave the worst fit, with AIC values far higher than Weibull and Gompertz models. Thermal time required for given seedling emergence was affected by burial depth and increased with soil depth. For example, when seeds buried in the 5 cm depth, they required 744 TT for 50% emergence. However, seeds in 2 cm depth had a shorter emergence time-span and required 391-488 TT for 50% emergence

کلیدواژه‌ها [English]

  • modeling
  • soil depth
  • weed management
  • Common cocklebur
 

Anderson, R. L. and Nielsen, D. C. 1996. Emergence pattern of five weeds in the Central Great Plains. Weed Technol. 10:744–749.

Buhler, D. D., Liebman, M. and Obrycki, J. J. 2000. Theoretical and practice challenges to an IPM approach to weed management. Weed Sci. 48:274–280.

Burnham, K. P. and Anderson, D. R. 2002. Model selection and multimodel inference: A practical information-theoretic approach. New York: Springer-Verlag.

Dorado, J., Sousa, E., Calha, I. M., Gonzalez-Andujar, J. L. and Fernandez-Quintanilla, C. 2009. Predicting weed emergence in maize crops under two contrasting climatic conditions. Weed Res. 49: 251-260.

Ekeleme, F., Forcella, F., Archer, D.W. Akobundu, I.O. and Chikoye, D. 2005. Seedling emergence model for tropic ageratum (Ageratum conyzoides). Weed Sci. 53:55–61.

Forcella, F. 1998. Real-time assessment of seed dormancy and seedling growth for weed management. Seed Sci. Res. 8:201–209.

Gan, Y., Stobbe, E. H. and Moes, J. 1992. Relative date of wheat seedling emergence and its impact on grain yield. Crop Sci. 32: 1275-1281.

Gordon, R. and Bootsma, A. 1993. Analysis of growing degree-days for agriculture in Atlantic Canada. Climate Res. 3: 169-176.

Grundy, A. C. and Mead, A. 2000. Modeling weed emergence as a function of meteorological records. Weed Sci. 48:594–603.

Harris, S. M., Doohan, D. J., Gordon, R. J. and Jensen, K.I.N. 1998. The effect of thermal time and soil water on emergence of Ranunculus repens. Weed Res. 38: 405-412.

    Harrison, S. K., Regnier, E. E. Schmoll, J. T. and Harrison, J.M. 2007. Seed size and burial effects on giant ragweed (Ambrosia trifida) emergence and seed demise. Weed Sci. 55:16–22.

Karimmojeni, H., Rahimian-Mashhadi, H., Alizadeh, H.M., Cousens, R. D. and Beheshtian- Mesgaran, M. 2010. Interference between maize and Xanthium strumarium or Datura stramonium. Weed Res. 50:253–261.

Knezevic, S. Z., Wiese, S. F. and Swanton, C. J. 1994. Interference of redroot pigweed (Amaranthus retroflexus) in corn (Zea mays). Weed Sci. 42:568–573.

Kochaki, A. R. and Sarmadnia, GH. H. 1998. Physiology of crops (translation).Mashhad University jahad Press. Thirteenth Printing. (In Persian with English summary).

  Leblanc, M. L., Cloutier, D. C., Stewart, K. A. and Hamel, C. 2003. The use of thermal time to model common lambsquarters (Chenopodium album) seedling emergence in corn. Weed Sci. 51:718–724.

Mennan, H. 2003. The effects of depth and duration of burial on seasonal germination, dormancy and viability of Galium aparine and Bifora radians seeds. J. Agron. Crop Sci. 189:304–309.

Mennan, H. and Ngouajio, M. 2006. Seasonal cycles in germination and seedling emergence of summer and winter populations of catchweed bedstraw (Galium aparine) and wild mustard (Brassica kaber).Weed Sci. 54:114–120.

Norsworthy, J. K. and Oliveira, M. J. 2007. A Model for predicting common cocklebur (Xanthium strumarium) emergence in soybean. Weed Sci. 55:341–345.

Omami, E. N., Haigh, A.M., Medd, R.W. and Nicol, H.I. 1999. Changes in germinability, dormancy and viability of Amaranthus retroflexus as affected by depth and duration of burial. Weed Res. 39:345–354.

Rashed Mahassel, M. H., Rastgoo, M., Moosavi, K. and Valialahpoor, R. 2006. Principles of weed science (Translation). Mashhad University Press. First Printing. P: 519. .(In Persian with English summary).

 

Yousefi, A. R. 2009. Effect of reduced dose of imazethapeyr on competitive ability of Common cocklebur (Xanthium strumarium) and redroot pigweed (Amaranthus retroflexus) in soybean .PhD thesis, University of Tehran, Karaj, Iran.(In Persian with English summary).