استفاده از تکنیک پردازش تصویر و شبکه‌های عصبی مصنوعی برای شناسایی علف‌های‌هرز مزارع ذرت

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجو- پردیس کشاورزی و منابع طبیعی دانشگاه تهران

2 عضو هیئت علمی گروه زاعت و اصلاح نباتات پردیس کشاورزی و منابع طبیعی دانشگاه تهران

چکیده

علف‌های‌هرز به صورت لکه‌ای در مزرعه سبز می‌شوند. سمپاشی لکه‌ای علف‌های‌هرز، موجب کاهش مصرف علف‌کش‌ها، هزینه و آلودگی محیط زیست می‌شودد. برای تصمیم‌گیری در زمینه کنترل توسط فن آوریِ بینایی ماشین که در سمپاشی لکه‌ای به کار می‌رود، به تصویر و پردازش آن نیاز است. شناسایی درست علف‌های‌هرز و طبقه‌بندی آن‌ها، کلید اتخاذ تصمیمات کنترلی و اجرای عملیات سمپاشی است. در این تحقیق، روشی مبتنی بر ترکیب پردازش تصویر،  برای جداسازی علف‌های‌هرز از سایر اجزای تصویر و شبکۀ عصبی مصنوعی برای طبقه‌بندی پیشنهاد شده است. علف‌های‌هرز شامل تاج خروس ریشه قرمز،سلمه تره، آفتاب پرست، تاج خروسخوابیده ، تاج ریزی، سوروف و گاورس بودند. نتایج نشان داد که این الگوریتم، با دقت قابل قبولی علف‌های‌هرزرا از خاک جداسازی کرد. در گام بعد، ویژگی‌های مرتبط با رنگ و شکل، از علف‌های‌هرز استخراج شدند. سرانجام، به منظور طبقه‌بندی هفت کلاس علف‌هرز، از روش شبکه عصبی مصنوعی پرسپترون، با ساختار 7 -15-15-43  و میانگین دقت کل 71/88 درصد استفاده شد. نتایج حاصل از این مطالعه نشان داد که سامانه پیشنهادی، توانایی تشخیص علف‌های‌هرز با دقت مناسب را دارد. کاربرد چنین سامانه هایی می‌تواند با تشخیص به موقع علف‌های‌هرز و کاهش مصرف علف‌کش‌ها، بروز پدیده مقاومت علف‌های‌هرز به علف‌کش‌ها را به تاخیر اندازد و آلودگی‌های زیست محیطی را کاهش دهد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Weeds identification in corn fields based on image processing techniques and artificial neural networks

نویسندگان [English]

  • Abdol- Hossein Dashti 1
  • Mostafa Oveisi 2
  • Hamid Rahimian 2
  • Hassan Alizadeh 2
1 Phd student
2 University of Tehran +
چکیده [English]

Weeds normally grow as patches and spatially distributed in field. Patch spraying to control weeds has advantages such as cost reduction, herbicide saving and reduction of environmental pollution. Machine vision system should obtain and process digital images to make control decisions. Proper identification and classification of weeds are the key steps to make control decisions and use of any spraying operation performed. In this study, a robust method based on image processing and computational intelligence was developed for segmentation from other parts of image and classification of weeds. Large crabgrass, common lamb’s quarter, velvetleaf, common barnyard grass, European black nightshade, red-rooted pigweed and European heliotrope were the weeds in the experiment. Results showed that this algorithm was precisely separated weeds from the soil. In the next step, the feature vector, which includes shape features and color features, was composed. Finally, classification of seven classes of weeds was carried out by artificial neural network (ANN). Among different ANN structures, the most optimum classifier was the 43-15-15-7 topology with accuracy 88/71 %. The results of this research indicate that the proposed system has the ability to accurately detection of weeds.

کلیدواژه‌ها [English]

  • : Herbicide application
  • machine vision
  • patch spraying
  • precision agriculture
  • weed
References:
Ameri, H., Alizade, S. and Barzegari, A. 2013. Knowledge Extraction of Diabetics Data by Decision Tree Method. Ir. U. Med. Sci. 16(53): 58-72.
Burks, T.F., Shearer, S.A. Gates, R.S. and Donohue, K. D. 2000. Back propagation neural network design and evaluation for classifying weed species using color image texture. Am. Soc. Agr. Eng. 43(4): 1029-1037.
Blackmer, T.M. and Schepers, J.S. 1996. Using DGPS to improve corn production and water quality. GPS World.7: 44-52.
Chaudhary, P., Chaudhari, A.K. Cheeran, A.N. and Godara, S. 2012. Color transform based approach for disease spot detection on plant leaf. Int. J. comput. Sci. tel. 3(6): 65-70.
El-Faki, M., Zhang, N. and Peterson, D.E. 2000. Weed detection using color machine vision. Transactions of the ASAE. 43(6): 1969–1978.
Golzarian, M.R. and Frick, R.A. 2011. Classification of images of wheat, ryegrass and brome grass species at early growth stages using principal component analysis. Plant Meth. 7(28): 1-11.
Goñi, M.S. and Salvadori, O.V. 2016. Color measurement: comparison of colorimeter vs. computer vision system. F. M. Charact. 1–10.
Haykin, S. 1994. Neural Networks: A Comprehensive Foundation. New York, NY: Macmillan College PublishingCompany, Inc.
Haykin, S. 2009. Neural networks and learning machines. Pearson Education, Inc.
Kartalopoulos, S.V. 1996. Understanding neural networks and fuzzy logic. Basic Concepts and Applications. New York,NY: The Institute of Electrical and Electronics Engineers,Inc.
Kasabov, N.K. 1996. Foundations of neural networks, fuzzy systems, and knowledge engineering. Cambridge, MA: TheMIT Press.
Leo´n, K., Mery, D., Pedreschi, F. and Leo´n, J. 2006. Color measurement in L*a*b* units from RGB digital images. F. Res. Int. 39(10): 1084-1091.
Labatut, V. and Cheri, H. 2011. Accuracy measures for the comparison of classifiers. Al-Dahoud Ali. The 5th International Conference on Information Technology, Amman, Jordan.
Mebatsion, H.K., Paliwal, J. and Jayas, D.S. 2013. Automatic classification of non-touching cereal grains in digital images using limited morphological and color features. Comput. Electron. Agri. 90: 99–105.
Meyer, G.E., Franti, T.G. and Mortensen, D.A. 1997. Seek and destroy. Resource. Eng. Tech. Sust. World.4: 13-14.
Pe´rez, A.J., Lo´pez, F., Benlloch, J.V. and Christensen, S. 2000. Colour and shape analysis techniques for weed detection in cereal fields. Comput. Electro. Agri. 25: 197_/212.
Rath, T. and Hemming, J. 2000. Computer vision for identifying weeds in crops. IFAC. Proceed. Vol. 33: 187-190.
Schmoldt, D.L., Li, P. and Abbott, A.L. 1997. Machine vision using artificial neural networks with local 3D neighbourhoods. Comput. Elect. Agr.16: 255-271.
Staff, J.V. and Benlloch, J.V. 1997. Machine-assisted detection of weeds and weed patches. In Precision Agriculture ‘97. Volume II. Technology, IT and Management, ed. J. V. Stafford, 511-518. Herndon, VA: SCI Bios Scientific Publishers.
Sokolova, M. and Lapalme, Guy. 2009. A systematic analysis of performance measures forclassification tasks. Information Processing & Management. 45(4): 427–437.
Shapiro, L. and Stockman, G. 2001. Computer Vision. Prentice Hall Inc. Upper Saddle River. NJ, USA.
Shi, Z. and He, L. 2010. Application of neural networks in medical image processing. Proceedings of the Second International Symposium on Networking and Network Security. April 2-4., Jinggangshan, China.
Tang, L., Tian, L.F., Steward, B.L. and Reid, J.F. 1999. Texture based weed classification using gabor wavelets and neural network for real-time selective herbicide applications. ASAE Paper No. 99-3036. St. Joseph, Mich.: ASAE.
Thompson, J.F., Stafford, J.V. and Miller, P.C.H. 1991. Potential for automatic weed detection and selective herbicide application. Crop Prod. 10(4): 254-259.
Venora, G., Grillo, O. and Saccone, R. 2009. Quality assessment of durum wheat storage centers in Sicily: Evaluation vitreous, starchy and shrunken kernels using an image analysis system. J. Cereal Sci. 49: 429–440.
Yang, C., Prasher, S. and Landry, J. 1998. Application of artificial neural networks to image recognition in precision farming. ASAE Paper. No. 98-3039.
Zhou, X., Yuan, J and Liu, H. 2015. A Traffic Light Recognition Algorithm Based On Compressive Tracking. Int. J. Hyb. Inf. Tech. 8(6): 323-332.