تأثیر سه گونه قارچ میکوریزا بر فتوسنتز، رشد و محتوای متابولیت‌های ثانویه در علف‌هرز نیلوفر پیچ (Ipomoea purpurea L.)

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری گروه مهندسی تولید و ژنتیک گیاهی، دانشکده کشاورزی، دانشگاه زنجان

2 دانشیار گروه مهندسی تولید و ژنتیک گیاهی، دانشکده کشاورزی، دانشگاه زنجان

3 گروه زراعت و اصلاح نباتات، دانشکده کشاورزی، دانشگاه زنجان

4 استاد، گروه فیزیولوژی گیاهی، دانشکده بیولوژی، دانشگاه ناوارا

چکیده

خاک­ورزی، کاربردکودهای شیمیایی و آفت­کش­ها با کاهش جمعیت قارچ­های میکوریزا در خاک­های زراعی، امکان بهرمندی گیاهان زراعی از همزیستی با این موجودات را کاهش می­دهند. افزایش جمعت قارچ­های میکوریزا به­صورت مصنوعی، به­عنوان راهکاری برای رفع این مشکل مطرح می­باشد؛ با این­حال و در این صورت، امکان بهرمندی علف­های هرز نیز وجود خواهد داشت. بنابراین آزمایشی به منظور بررسی پاسخ علف­هرز نیلوفر پیچ به همزیستی با سه گونه قارچ میکوریزآرباسکولار(Funneliformis mosseae, Rhizoglomus fasciculatum , Rhizoglomus intraradices ) انجام شد. نتایج نشان داد که تلقیح گیاهان با مایکوریزای R. intraradices سرعت فتوسنتزی را 9/1 برابر نسبت به گیاهان شاهد افزایش داد و تلقیح با گونه F. mosseae شاخص کلروفیل برگ، وزن خشک ریشه و حجم ریشه را به‌ترتیب 35، 60 و 70 درصد در مقایسه با گیاهان تلقیح نیافته بهبود داد. تلقیح با دوگونهF. mosseae  و R. fasiculatumسبب بهبود پارامترهای رشدی گیاه شد. همچنین تلقیح با میکوریزا، متابولیت­های ثانویه گیاه ازجمله فنل، فلاونوئید و ترپنوئیدهای کل گیاه را افزایش داد. تجمع فلاونوئیدها در برگ­های گیاهان تلقیح یافته با مایکوریزای F. mosseae، 2/4 برابر بیشتر از گیاهان تلقیح نیافته بود. افزایش فتوسنتز، رشد و محتوای متابولیت ثانویه در علف­های‌هرز همزیست شده با قارچ میکوریزا نشان می­دهد که قدرت رقابت و توان آللوپاتیک این گیاهان به هنگام برقراری رابطه همزیستی، افزایش می­یابد و توان آللوپاتیک بالا، علف­هرز را به یک رقیب قوی علیه سایر گونه­های گیاهی در محیط تبدیل می­کند.

کلیدواژه‌ها


عنوان مقاله [English]

Effect of three Species of mycorrhizal fungus on photosynthesis, growth and secondary metabolites content of (Ipomoea purpurea L.)

نویسندگان [English]

  • Sakineh Rashidi 1
  • Ali Reza Yousefi 2
  • Majid Pouryousef 3
  • Maria Nieves Goicoechea 4
1 Department of Plant Production & Genetics, University of Zanjan
2 Department of Plant Production & Genetics, University of Zanjan
3 Department of Plant Production & Genetics, University of Zanjan
4 Department of Environmental Biology, Plant Stress Physiology Group, Associated to CSIC (EEAD, Zaragoza, ICVV, Logroño), Schools of Sciences and Pharmacy and Nutrition, University of Navarra
چکیده [English]

In arable soils, decreasing the fungal population due to tillage, application of chemical fertilizers and pesticides, reduces the potential benefits of mycorrhizal fungi for crop plants. To solve this problem, soil inoculation can be a practical ways to improve population size of mycorrhizal fungi, however, in this situation, weeds can also be benefited. This study aimed to evaluate the effect of three species of arbuscular mycorrhizal fungi (Funneliformis mosseae, Rhizoglomus fasciculatum, Rhizoglomus intraradices) on the growth of I.purpurea. Results indicated that inoculation with R. intraradices increased photosynthetic rate 1.9 times compared to control plants and inoculation with F. mosseae increased leaf chlorophyll index, root dry weight and root volume by 35%, 60 % and 70%, respectively, compared to the non inoculated plants. Inoculation with F. mosseae and R. fasiculatum improved plant growth parameters. Inoculation with AMF also increased plant's secondary metabolites, including phenolic compound, flavonoids and total terpenoid. The concentration of flavonoids in leaves of I. purpurea colonized by F. mosseae was 4.2 times more than that found in leaves of non- inoculated control plants. Increased photosynthesis, growth and secondary metabolites content in weeds associated with mycorrhizal fungi indicate that the competitive ability and allelopathic potential of these plants will increase when associated with AMF and the high allelopathic potential may facilitate this weed to become a good competitor against other plant species in the environment.

کلیدواژه‌ها [English]

  • Growth
  • Ipomoea purpurea L
  • mycorrhizal fungus
  • secondary metabolites
 Aliasgharzadeh, N., Saleh Rastin, N., Towfighi, H. and Alizadeh, A. 2001. Occurrence of arbuscular mycorrhizal fungi in saline soils of the Tabriz Plain of Iran in relation to some physical and chemical properties of soil. Mycorrhiza. 11:119-122. (In Persian with English summary).
Arnon, D.I. and Hoagland, D.R. 1939. A comparison of water culture and soil as media for crop production. Science. 89: 512–514.
Arpana, J. and Bagyaraj, D.J. 2007. Response of kalmegh to an arbuscalar mycorrhizal fungus and a plant growth promoting rhizomicroorganism at two levels of phosphorus fertilizer. American-Eurasian J. Agric. Sci. 1: 33-38.
Asrar, A. and Elhindi, K.M. 2011. Alleviation of drought stress of marigold (Tagetes erecta) plants by using arbuscular mycorrhizal fungi. Saudi J. Biol. Sci.18: 93–98.
Augé, R.M. 2001. Water relations, drought and vesicular-arbuscular mycorrhizal symbiosis. Mycorrhiza. 11: 3–42.
Auge, R.M., Toler, H.D. and A.M. Saxton. 2015. Arbuscular mycorrhizal symbiosis alters stomatal conductance of host plants more under drought than under amply watered conditions: a meta-analysis. Mycorrhiza. 251: 13-24.
Bah. M. and Pereda-Miranda. R. 1997. Isolation and structural characterization of new ester type dimers from the resin of Ipomoea tricolor (Convolvulaceae). Tetrahedron. 53: 9007-9022.
Bai, J.F., Lin, X.G., Yin, R., Zhang, H.Y., Wang, J.H., Chen, X.M. and Luo, Y.M. 2008. The influence of arbuscular mycorrhizal fungi on As and P uptake by maize (Zea mays L.) from As-contaminated soils. Appl. Soil Ecol. 38: 137-145.
Barros, L., Ferreira, M.J., Queirós, B., Ferreira, I.C.F.R. and Baptista, P. 2007. Total phenols, ascorbic acid, -carotene and lycopene in Portuguese wild edible mushrooms and their antioxidant activities. Food Chem.103: 3-419.
 Batish, D.R., Kaur, S., Singh, H.P. and Kohli, R.K. 2008.Role of root-mediated interactions in phytotoxic interference of Ageratum conyzoides with rice (Oryza sativa). Flora. 204: 388-395.
Blanco, I., Rajaram, A.S. Kronstad, W.E. and  Reynolds. M.O. 2000. Physiological performance of synthetice hexaploid wheat-derived populations. Crop Sci. 40:1257-1263.
Breuillin-Sessoms, F., Floss, D.S., Gomez, S.K. and Pumplin, N. 2015. Suppression of arbuscule degeneration in Medicago truncatula phosphate transporter4 mutants is dependent on the ammonium transporter 2 family protein AMT2; 3. The Plant Cell:. 27: 1352-1366.
Calvet, C., Pinochet, J., Hernandez-Dorrego, A., Estan,V. and Camprubi, A. 2001. Field microplot performance of the peach-almond hybrid GF-677 after inoculation with arbuscular mycorrhizal fungi in a replant soil infested with rootknot nematodes. Mycorrhiza. 10:295–300.
Castillo, C.G., Ortiz, C.A. Borie, F.R. and Rubio, R.E. 2009. Respuesta de Ají (Capsicum annuum L.) cv.“Cacho de Cabra” a la inoculación con Hongos Micorrícicos Arbusculares. Inf. Tecnol.  20: 3-14.
Chang, C.C., Yang, M.H., Wen, H.M. and Chern, J.C. .2002. Estimation of total flavonoid content in propolis by two complementary colorimetric methods. J. Food Drug Anal. 10: 178–182.
Corre-Hellou, G., Fustec, J. and Crozat, Y. 2006. Interspecific competition for soil N and its
interaction with N2 fixation, leaf expansion and crop growth in pea barley intercrops. Plant Soil . 282: 195 – 208.
Demir, S., 2004. Influence of arbuscular mycorrhiza on some physiological growth parameters of pepper. Turk. J. Biol. 28: 85-90.
Dudhane, M.P., Borde, M.Y. and Jite, P.K. 2011. Effect of arbuscular mycorrhizal fungi on growth and antioxidant activity in Gmelina arborea Roxb. under salt stress condition. Not. Sci. Biol. 3:71-78.
Duke, S.O., Vaughn, K.C., Croom, E.M., and Elsohly, H.N. 1987. Artemisinin, a constituent of annual wormwood (Artemisia annua), is a selective phytotoxin. Weed Sci. 35:499–505.
Entry, J.A., Rygiewicz, P.T. Watrud, L.S. and Donnelly, P.K. 2002. Influence of adverse soilconditions on the formation and function of Arbuscular Mycorrhizas. Adv. Environ.  Res. 7: 123-138.
Finlay, R.D. 2008. Ecological aspects of mycorrhizal symbiosis: with special emphasis on functional diversity of interactions involving the extraradical mycelium. J. Exp. Bot. 59:1115–1126.
Ghorai, N., Chakraborty ,S., Gucchait, S., Saha, S.K. and Biswas, S. 2012. Estimation of total terpenoids concentration in plant tissues using a monoterpene, Linalool as standard reagent. Protoc. Exch . 55:1-6.
Giri, B. and Mukerji, G.K. 2004. Mycorrhiza inoculate alleviates salt stress in Sesbania aegyptica and Sesbania grandiflora under field conditions: evidence for reduced sodium and improved magnesium uptake. Mycorrhiza. 14: 307-312.
Giri, B., Kapoor. R. and Mukerji, K.G. 2007. Improved tolerance of Acacia nilotica to salt stress by arbuscular mycorrhiza, Glomus fasciculatum may be partly related to elevated K/Na ratios in root and shoot tissues. Microb. Ecol. 54:753-760.
Gourley, J.M., Heacock, R.A., Mcinnes, A.G., Nikolin. B. and Smith, D.G. 1969. Structure of ipalbine, a new hexahydroindolizine alkaloid isolated from Ipomoea alba. J. Chem. Soc. 13: 709-710.
Harley, J.L. and Smith, S.E. 1983. Mycorrhizal ymbiosis. Academic Press, London, UK.  483 Pp.
Hermans, C., Smeyers, M., Rodriguez, R.M., Eyletters, M., Strasser, R.J. and Delhaye, J. P. 2003. Quality assessment of urban trees: a comparative study of physiological characterisation, airborne imaging and on site fluorescence monitoring by the OJIP-test.Plant Physiol. 160:81-90.
Jansa, J., Wiemken, A. and  Frossard, E.  2006. The effects of agricultural practices on arbuscular mycorrhizal fungi. In: Function of soils for human societies and the environment .Geolog. Soc., London. 266: 89– 115.
Kabir, Z., 2005. Tillage or no-tillage: impact on mycorrhizae. Can. J. Plant Sci. 85: 23-29.
Karagiannidis, N., Bletsos, F. and Stavropoulos, N. 2002. Effects of verticillium wilt (Verticillium dahlia kleb.) and mycorrhiza (Glomus mosseae) on root colonization, growth and nutrient uptake in tomato and eggplant seedlings. Sci. Hort. 94: 145-156.
Khare, C.P. 2007. Indian Medicinal Plants. Springer Science, NY. 335 Pp.
Kefeli, V.I., Kaleviteh, M.V. and Borsari, B. 2003. Phenolic cycle in plants and
environment. J. Mol. Cell Biol. 2: 13-18.
Koide, R., Li, M., Lewis, J. and Irby, C. 1988. Role of mycorrhizal infection in the growth and reproduction of wild vs. cultivated plants. I. Wild vs. cultivated oats. Oecologia.77:537–543.
Lee, B.R., Muneer, S., Avice, J.C., Jung ,W.J. and Kim T.H. 2012. Mycorrhizal colonisation and P-supplement effects on N uptake and N assimilation in perennial ryegrass under well-watered and drought-stressed conditions. Mycorrhiza. 22: 525-534.
Levizou, E., Karageorgou, P., Petropoulou, Y., Grammatikopoulos, G. and Maneta, S.Y. 2004. Induction of a geotropic response in letuce radicle growth by epicuticular flavonoid aglycons of Ditrichia viscosa. Biol. Plantarum. 48:305-307.
Li, J., Liu, X., Dong, F., Xu, J., Li, Y., Shan, W. and Zheng. Y. 2011. Potential allelopathic effects of volatile oils from Descurainia Sophia (L.) Webb ex Prantl on wheat. Biochem. Syst. Ecol.39: 56-63.
Liu, A., Plenchette, C., and Hamel, C. 2007. Soil nutrient and water providers: how arbuscular mycorrhizal mycelia support plant performance in a resource limited world. pp. 37-66. In: Hamel, C., and Plenchette, C. (eds.), Mycorrhizae in Crop. Production. Haworth Food and Agricultural Products Press, Binghamton, New York, U.S.A.
Macias, F.A., Molinillo, J., Varela, R.M. and Galindo. J.C.G. 2007. Allelopathy a natural alternative for weed control. Pest Manag. Sci. 63:327-348.
Martinez, T.N. and Johnson, N.C .2010. Agricultural management influences propagule densities and functioning of arbuscular mycorrhizas in low- and high- input agroecosystems in arid environments. Appl. Soil Ecol. 46: 300–306.
Nabeel, M.M., Fawzia, M.R. and Gharchafchi, A. 2006. Allelopathic effects of Artemisia herba alba on germination and seedling growth of Anabasis setifera. PJBS. 9: 1795-1798.
Naghizade, M. 2007. Mycorrhiza. J. Biol. 21: 26-30. (In Persian).
Narwal, S.S. Palaniraj, R. and Sati, S.C. 2005. Role of allopathy in crop production. Herbologia. 6(2): 121-135.
Perner, H., Rohn, S., Driemel, G., Batt, N., Schwarz, D., Kroh, L.W. and George, E. 2008. Effect of nitrogen species supply and mycorrhizal colonization on organosulfur and phenolic compounds in onions. J. Agric. Food Chem. 56: 3538-3545.
Pirzad, A.R., Habibzadeh, Y. and Jalilian, J. 2014. Seed yield variations mungbean (Vigna radiate L.) at mycorrhizal symbiosis under water stress. Field Crops Res. 2: 33-43.
Rosendahl, S. and Matzen, H.B. 2008. Genetic structure of arbuscular mycorrhizal populations in fallow and cultivated soils. New Phytol. 179: 1154–1161.
Safari Sanjan, A. 2003. Soil biology and biochemistry. Bu-Ali Sina University, Hamadan. 586 Pp. (In Persian)
Savari-Nejad, A.R., Habibian, L. and Yunes-Abadi, M. 2010. The introduction of new invasive weeds of wild melon, morning glory and two spurge species in soybean fields in Golestan province. The First National Conference on Advances in the production of plant oils, 26-27 May 2010. Bojnourd, Iran.
Smith, S.E. and Read, D.J. 2008. Mycorrhizal Symbiosis. Academic Press, New York. 800 Pp.
Stanley, C., Gimenze, A.E., York, A.C., Batts, R.B. and Wilcut, J.W. 2001. Morningglory (Ipomoea spp.) and large crabgrass (Digitaria sanguinalis) control with glyphosate and 2,4-DB mixtures in glyphosate-resistant soybean (Glycine max). Weed Technol. 15:56-61.
Tahat, M., Kamaruzaman, S. and Othman, R. 2010. Mycorrhizal fungi as a biocontrol agent.  J. Plant Pathol. 9: 198–207.
Tang, F., White, J.A. and Charvat, I. 2001. The effect of phosphorus availability on arbuscular mycorrhizal colonization on Typha angustifolia. Mycologia. 93: 1042–1047
Wang, C.. Li, X., Zhou, J., Wang, G. and Dong, Y. 2008. Effects of arbuscular mycorrhizal fungi on growth and yield of cucumber plants. Commun. Soil Sci. Plant Anal. 39: 499-508.
Wang, F.Y., Hu, J.L., Lin, X.G., Qin, S.W. and Wang, J.H. 2011. Arbuscular mycorrhizal fungal community structure and diversity in response to long-term fertilization: a field case from China. World J. Microbiol Biotechnol. 27: 67–74.
Wang, J.P., Fu, Z.Y., Ren, Q., Zhu, L.J., Lin, J., Zhang, J.C., Cheng, X.F., Ma, J.Y. and Yue, J.M. 2019. Effects of arbuscular mycorrhizal fungi on growth, photosynthesis, and nutrient uptake of Zelkova serrata (Thunb.) Makino seedlings under salt stress. Forests . 10: 186.
Waterman, P.T. and Mole, S. 1994. Analysis of phenolic plant metabolites. London: Blackwell Scientific Publications. 238 Pp.
Wortmann, C.S. 1993. Contribution of bean morphological characteristics to weed suppression. Agron. J. 85: 840 843.
Wu, Q.S. and Xia, R.X. 2006. Arbuscular mycorrhizal fungi influence growth, osmotic adjustment and photosynthesis of citrus under well-watered and water stress conditions. J. Plant Physiol. 163: 417-425.
Yan, Z.Q., Guo, H.R., Yang, J.Y., Liu, Q., Jin, H., Xu, R., Cui, H.Y.and Qin, B. 2014. Phytotoxic flavonoids from roots of Stellera chamaejasme L. (Thymelaeaceae). Phytochemistry. 106:61-8.
Zhao, H.L., Qiang, W., Xiao, R., Cun-De, P. and De-An, J. 2010. Phenolics and plant allelopathy. Molecules. 15: 8933-8952.